Comparative study of the use of starch from agroindustrial materials in the coagulation-floculation process

  • A. Villabona-Ortíz
  • C. Tejada-Tovar
  • R. Ortega Toro
Keywords: bioflocculant, turbidity, polysaccharide, colloid, water treatment


Coagulation-flocculation is a process that takes place in the water treatment industries with the aim of reducing the repulsive potential of the double electric layer of colloids using the addition of coagulants. This study evaluated the use of cassava (Manihot esculenta), yam (Dioscorea alata) and plantain (Musa paradisiaca) starch, post-harvest residual, in the coagulation-flocculation process for the removal of turbidity in a synthetic water sample. The extraction of the starches was carried out by two methods: alkaline with NaOH and with deionized water. The starches obtained were characterized by physical analysis (color, state and pH), quantifying the nitrogen and carbon content. The effect of the coagulant concentration and the stirring rate on the coagulation-flocculation capacity of the starches under study were assessed as well. It was found that the plantain starch, obtained by both methods, reached the best percentages of turbidity reduction up to 94.6%, becoming an alternative to synthetic coagulants. The results presented in this basic study can be of great value for the scaling of starch production from these residues at an industrial level in the department of Bolívar, Colombia


Afolabi, T. A., Olu-Owolabi, B. I., Adebowale, K. O., Lawal, O. S., & Akintayo, C. O. (2011). Functional and tableting properties of acetylated and oxidised finger millet (Eleusine coracana) starch. Starch - Stärke, 64(4), 326–337.

Almario, A. A., Mendoza-Fandiño, J. M., & Arrieta-Torres, P. L. (2019). Evaluation of elaboration parameters of a solid biopolymer electrolyte of cassava starch on their performance in an electrochemical accumulator. Revista Mexicana de Ingeniería Química, 18(3), 1203-1210.

Anastasakis, K., Kalderis, D., & Diamadopoulos, E. (2009). Flocculation behavior of mallow and okra mucilage in treating wastewater. Desalination, 249(2), 786–791.

Campbell, A. (2002). The potential role of aluminium in Alzheimer’s disease. Nephrology Dialysis Transplantation, 17(suppl_2), 17–20. Retrieved from Canepa, L; Maldonado, V; Barrenechea, A; Aurazo, M. (2004). Capítulo 9: Filtración. In Tratamiento de agua para consumo humano. In Plantas de filtración rápida. Manual I: teoría. (Vol. Tomo II, pp. 83–100).

Carrasquero, S., Montiel, S., Faría, E., Parra, P., Marín, J., & Díaz, A. (2017). Efectividad de coagulantes obtenidos de residuos de papa (Sonalum tuberosum) y plátano (musa paradisiaca) en la clarificación de aguas. Revista Facultad de Ciencias Basicas, 13(2): 90-99.

Choy, S. Y., Prasad, K. N., Wu, T. Y., Raghunandan, M. E., & Ramanan, R. N. (2016). Performance of conventional starches as natural coagulants for turbidity removal. Ecological Engineering, 94, 352–364.

Daverey, A., Tiwari, N., & Dutta, K. (2018). Utilization of extracts of Musa paradisica (plantain) peels and Dolichos lablab (Indian bean) seeds as low-cost natural coagulants for turbidity removal from water. Environmental Science and Pollution Research, 1-7.

dos Santos, J. D., Veit, M. T., Juchen, P. T., da Cunha Gonçalves, G., Palácio, S. M., & Fagundes-Klen, M. (2018). Use of different coagulants for cassava processing wastewater treatment. Journal of Environmental Chemical Engineering, 6(2), 1821–1827.

Fuentes Molina, N., Molina Rodríguez, E. J., & Ariza, C. P. (2016). Coagulantes naturales en sistemas de flujo continuo, como sustituto del Al2(SO4)3 para clarificación de aguas. Producción + Limpia, 11(2), 41–54.

Gao, Q., Zhu, X.-H., Mu, J., Zhang, Y., & Dong, X.-W. (2009). Using Ruditapes philippinarum conglutination mud to produce bioflocculant and its applications in wastewater treatment. Bioresource Technology, 100(21), 4996–5001.

Guo, J., & Chen, C. (2017). Sludge conditioning using the composite of a bioflocculant and PAC for enhancement in dewaterability. Chemosphere, 185, 277–283.

Hernández, F., Morales, Y., Lambis, H., & Pasqualinoc, J. (2017). Starch extraction potential from plantain peel wastes. Journal of Environmental Chemical Engineering, 5, 4980-4985.

Kukić D. V., Šćiban, M. B., Prodanović, J.M., Tepić, A.N., & Vasić, M.A. (2015) Extracts of fava bean (Vicia faba L.) seeds as natural coagulants. Ecological Engineering, 84, 229–232.

Lee, C. S., Chong, M. F., Robinson, J., & Binner, E. (2014). A Review on Development and Application of Plant-Based Bioflocculants and Grafted Bioflocculants. Industrial & Engineering Chemistry Research, 53(48), 18357–18369.

Maniglia, B. C., & Tapia-Blácido, D. R. (2016). Isolation and characterization of starch from babassu mesocarp. Food Hydrocolloids, 55, 47–55.

Mavura, W.J., Chemelil, M.C., Saenyi, W.W., & Mavura, H.K. (2008). Investigation of chemical and biochemical properties of Maerua subcordata plant extract: a local water clarification agent. Bulletin of the Chemical Society of Ethiopia, 22, 143–148

Mishra, A., & Bajpai, M. (2006). The flocculation performance of Tamarindus mucilage in relation to removal of vat and direct dyes. Bioresource Technology, 97(8), 1055–1059.

Pantoja-Espinoza, J. C., Proal-Nájera, J. B., García-Roig, M., Cháirez-Hernández, I., & Osorio-Revilla, G. I. (2015).
Eficiencias comparativas de inactivación de bacterias coliformes en efluentes municipales por fotólisis (UV) y por fotocatálisis (UV/TiO2/SiO2). Caso: depuradora de aguas de Salamanca, España. Revista mexicana de Ingeniería Química, 14(1), 119-135.

Rodiño-Arguello, J. P., Feria-Diaz, J. J., Paternina-Uribe, R. de J., & Marrugo-Negrete, J. L. (2015). Sinú River raw water treatment by natural coagulants. Revista Facultad de Ingeniería Universidad de Antioquia, (76), 90–98.

Salehizadeh, H., Yan, N., & Farnood, R. (2018). Recent advances in polysaccharide bio-based flocculants. Biotechnology Advances, 36(1), 92–119.

Šćiban, M., Klašnja, M., Antov, M., & Škrbić, B. (2009). Removal of water turbidity by natural coagulants obtained from chestnut and acorn. Bioresource technology, 100 (24), 6639-6643.

Teh, C. Y., Budiman, P. M., Shak, K. P. Y., & Wu, T. Y. (2016). Recent Advancement of Coagulation–Flocculation and Its Application in Wastewater Treatment. Industrial & Engineering Chemistry Research, 55(16), 4363–4389.

Wan Kamar, W. I. S., Abdul Aziz, H., & Ramli, S. F. (2015). Removal of Suspended Solids, Chemical Oxygen Demand and Color from Domestic Wastewater Using Sago Starch as Coagulant. Applied Mechanics and Materials, 802, 519–524.

Yuliana, M., Huynh, L.-H., Ho, Q.-P., Truong, C.-T., & Ju, Y.-H. (2012). Defatted cashew nut shell starch as renewable polymeric material: Isolation and characterization. Carbohydrate Polymers, 87(4), 2576–2581.
How to Cite
Villabona-Ortíz, A., Tejada-Tovar, C., & Ortega Toro, R. (2019). Comparative study of the use of starch from agroindustrial materials in the coagulation-floculation process. Revista Mexicana De Ingeniería Química, 19(2), 593-601.
Environmental Engineering