Production of bacterial cellulose by Komagataeibacter xylinus using mango waste as alternative culture medium

  • M. E. García-Sánchez
  • J. R. Robledo-Ortiz
  • I. Jiménez-Palomar
  • O. González-Reynoso
  • Y. González-García
Keywords: Bacterial cellulose, Komagataeibacter xylinus, nanocellulose, mango waste


Bacterial cellulose (BC) is a high value-added nano-structured biopolymer with important biomedical applications.  Its biosynthesis from waste carbon sources might modify BC structure and properties, thus Mango pulp waste (MPW) was evaluated as an alternative culture medium for its production by the bacteria Komagataeibacter xylinus. The use of MPW could also decrease BC cost since the use pure sugars for its obtaining is expensive. The effect of different nitrogen sources and buffer addition to MPW-medium on the polymer yield was also investigated. Using MPW and yeast extract as a nitrogen source, a production of 6.32 g/L of BC was obtained after 16 days of static culture.  BC was characterized by SEM, XRD, TGA, FTIR and Water holding capacity (WHC). Chemical structure and thermal degradation of BC produced from MPW were similar to those of BC obtained with pure sugars (350°C). Crystallinity index of BC produced in mango-based medium was lower (62.7 % vs. 77.2 %); WHC was higher (108.7 % vs.  88.7 %); and fiber diameter was smaller (98.8 nm vs. 50.6 nm).


Álvarez-Cáliz, C., Santos-Dueñas, I. M., Cañete-Rodríguez, A. M., García-Martínez, T., Mauricio, J. C., and García-García, I. (2012). Free amino acids, urea and ammonium ion contents for submerged wine vinegar production: influence of loading rate and air-flow rate. Acetic Acid Bacteria 1, 1-5.

Bolio-López, G.I., Valadez-González, A., Veleva, L., and Andreeva, A. (2011). Cellulose whiskers from agro-industrial banana wastes: isolation and characterization. Revista Mexicana de Ingeniería Química 10, 291-299.

Castro, C., Zuluaga, R., Putaux, J. L., Caro, G., Mondragón, I., and Gañán, P. (2011). Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes. Carbohydrate Polymers 84, 96–102.

Chauhan, S. K., Tyagi, S. M., and Singh, D. (2001). Pectinolytic liquefaction of apricot, plum, and mango pulps for juice extraction. International Journal of Food Properties 4, 103–109.

Chawla, P. R., Bajaj, I. B., Survase, S., and Singhal, R. S. (2009). Microbial cellulose: Fermentative production and applications (Review). Food Technology and Biotechnology 47, 107–124.

Coyne, M. (2000). Microbiología del suelo: un enfoque exploratorio. Madrid, ES: Edit. Paraninfo.
Embuscado, M. E., Marks, J. S., and BeMiller, J. N. (1994). Bacterial cellulose. I. Factors affecting the production of cellulose by Acetobacter xylinum. Topics in Catalysis 8, 407–418.

Esguerra, M., Fink, H., Laschke, M.W., Jeppsson, A., Delbro, D., Gatenholm, P., Menger, M. D., Risberg, B. (2010). Intravital fluorescent microscopic evaluation of bacterial cellulose as scaffold for vascular grafts. Journal of Biomedical Materials Research - Part A 93, 140–149.

FAO. (2017). Top 20 Countries Production of Mangoes, mangosteens and guavas.

Fessard, A., Kapoor, A., Patche, J., Assemat, S., Hoarau, M., Bourdon, E., Bahorun, T., Remize, F. (2017). Lactic fermentation as an efficient tool to enhance the antioxidant activity of tropical fruit juices and teas. Microorganisms 5, 1-20.

Garg, N., Tandon, D. K., and Kalra, S. K. (1995). Production of mango vinegar by immobilized cells of Acetobacter aceti. Journal of Food Science and Technology 32, 216–218.

Gelin, K., Bodin, A., Gatenholm, P., Mihranyan, A., Edwards, K., and Strømme, M. (2007). Characterization of water in bacterial cellulose using dielectric spectroscopy and electron microscopy. Polymer 48, 7623–7631.

Gutierrez, M.C., Pérez-Ortega, F., and Felisberti, M.I. (2018). Effects of the presence of cellulose and curaua fibers in the thermal and mechanical properties of eco-composites based on cellulose acetate. Revista Mexicana de Ingeniería Química 17, 533-546.

Harkins, A. L., Duri, S., Kloth, L. C., and Tran, C. D. (2014). Chitosan-cellulose composite for wound dressing material. Part 2. Antimicrobial activity, blood absorption ability, and biocompatibility. Journal of Biomedical Materials Research - Part B Applied Biomaterials 102, 1199–1206.

Helenius, G., Bäckdahl, H., Bodin, A., Nannmark, U., Gatenholm, P., and Risberg, B. (2006). In vivo biocompatibility of bacterial cellulose. Journal of Biomedical Materials Research - Part A 76, 431–438.

Hussein, S., Halmi, M. I. E., and Ling, A. P. K. (2017). The modified Gompertz model demonstrates a variable growth rate between two Centella asiatica phenotypes. Journal of Biochemistry, Microbiology and Biotechnology 5, 18–20.

Iguchi, M., Yamanaka, S., and Budhiono, A. (2000). Bacterial cellulose — a masterpiece of nature’s arts. Journal of Materials Science 35, 261–270.

Jannesari, M., Varshosaz, J., Morshed, M., and Zamani, M. (2011). Composite poly(vinyl alcohol)/poly(vinyl acetate) electrospun nanofibrous mats as a novel wound dressing matrix for controlled release of drugs. International Journal of Nanomedicine 6, 993–1003.

Jozala, A. F., Pértile, R. A. N., Dos Santos, C. A., De Carvalho Santos-Ebinuma, V., Seckler, M. M., Gama, F. M., and Pessoa, A. (2014). Bacterial cellulose production by Gluconacetobacter xylinus by employing alternative culture media. Applied Microbiology and Biotechnology 99, 1181–1190.

Jung, J. Y., Khan, T., Park, J. K., and Chang, H. N. (2007). Production of bacterial cellulose by Gluconacetobacter hansenii using a novel bioreactor equipped with a spin filter. Korean Journal of Chemical Engineering 24, 265–271.

Keshk, S. M. (2014a). Bacterial cellulose production and its industrial applications. Bioprocessing and Biotechniques 4, 1–10.

Keshk, S. M. (2014b). Vitamin C enhances bacterial cellulose production in Gluconacetobacter xylinus. Carbohydrate Polymers 99, 98–100.

Keshk, S., and Sameshima, K. (2006). Influence of lignosulfonate on crystal structure and productivity of bacterial cellulose in a static culture. Enzyme and Microbial Technology 40, 4–8.

Khan, S., Ul-Islam, M., Khattak, W. A., Ullah, M. W., and Park, J. K. (2015). Bacterial cellulose-poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) composites for optoelectronic applications. Carbohydrate Polymers 127, 86–93.

Kirdponpattara, S., Khamkeaw, A., Sanchavanakit, N., Pavasant, P., and Phisalaphong, M. (2015). Structural modification and characterization of bacterial cellulose-alginate composite scaffolds for tissue engineering. Carbohydrate Polymers 132, 146–155.

Kongruang, S. (2008). Bacterial cellulose production by Acetobacter xylinum strains from agricultural waste products. Applied Biochemistry and Biotechnology 148, 245–256.

Krystynowicz, A., Czaja, W., Wiktorowska-Jezierska, A., Gonçalves-Miśkiewicz, M., Turkiewicz, M., and Bielecki, S. (2002). Factors affecting the yield and properties of bacterial cellulose. Journal of Industrial Microbiology and Biotechnology 29, 189–195.

Lee, K. Y., Buldum, G., Mantalaris, A., and Bismarck, A. (2014). More than meets the eye in bacterial cellulose: Biosynthesis, bioprocessing, and applications in advanced fiber composites. Macromolecular Bioscience 14, 10–32.

Lestari, P., Elfrida, N., Suryani, A., and Suryadi, Y. (2014). Study on the production of bacterial cellulose from Acetobacter xylinum using agro-waste. Jordan Journal of Biological Sciences 7, 75–80.

Leterme, P., Buldgen, A., Estrada, F., and Londoño, A. M. (2006). Mineral content of tropical fruits and unconventional foods of the Andes and the rain forest of Colombia. Food Chemistry 95, 644–652.

Liu, F.X., Fu, S. F., Bi, X. F., Chen, F., Liao, X. J., Hu, X. S., and Wu, J. H. (2013). Physico-chemical and antioxidant properties of four mango (Mangifera indica L.) cultivars in China. Food Chemistry 138, 396–405.

Liu, F., Li, R., Wang, Y., Bi, X., and Liao, X. (2014). Effects of high hydrostatic pressure and high-temperature short-time on mango nectars: Changes in microorganisms, acid invertase, 5- hydroxymethylfurfural, sugars, viscosity, and cloud. Innovative Food Science and Emerging Technologies 22, 22–30.

Maneerung, T., Tokura, S., and Rujiravanit, R. (2008). Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydrate Polymers 72, 43–51.

Matsuoka, M., Tsuchida, T., Matsushita, K., Adachi, O., and Yoshinaga, F. (1996). A synthetic medium for bacterial cellulose production by Acetobacter xylinum subsp. sucrofermentans. Bioscience, Biotechnology, and Biochemistry 60, 575–579.

Mercado-Mercado, G., Moltalvo-González, E., Sánchez-Burgos, J.A., Velázquez-Estrada, R.M., Álvarez-Parrilla, E., González-Aguilar, G.A., Sáyago-Ayerdi, S.G. (2019). Optimization of β-carotene from 'ataulfo' mango (Mangifera indica L.) by-products using ultrasound-assisted extraction. Revista Mexicana de Ingeniería Química 10, 1051-1061.

Mohammadkazemi, F., Azin, M., and Ashori, A. (2015). Production of bacterial cellulose using different carbon sources and culture media. Carbohydrate Polymers 117, 518–523.

Natal, D.I.G., Da C. Rodrigues, K.C., De C. Moreira, M.E., De Queiróz, J.H., Dos A. Benjamin, L., Dos Santos, M.H., Sant’Ana, H.M.P., and Martino, H.S.D. (2017). Bioactive compounds of the Ubá mango juices decrease inflammation and hepatic steatosis in obese Wistar rats. Journal of Functional Foods 32, 409–418.

Park, J., Park, Y., and Jung, J. (2003). Production of bacterial cellulose by Gluconacetobacter hansenii PJK isolated from rotten apple. Biotechnology and Bioprocess Engineering 8, 83–88.

Petersen, N., and Gatenholm, P. (2011). Bacterial cellulose-based materials and medical devices: current state and perspectives. Applied Microbiology and Biotechnology 91, 1277–1286.

Quintana, M. (2015). Estudio de la producción y caracterización de celulosa por cultivo sumergido de Gluconacetobacter xylinus. Tesis de Maestría en Biotecnología, Universidad Autónoma Metropolitana, México.

Ramírez-Carmona, M and Muñóz-Blandón, O. (2016). Agroindustrial waste cellulose using fermented broth of white rot fungi. Revista Méxicana de Ingeniería Química 15, 23-31.

Roncero Vivero, M. B. (2003). Determinación de la cristalinidad y de la accesibilidad de las fibras de celulosa mediante diferentes técnicas. In Obtención de una secuencia “TCF” con la aplicación de ozono y enzimas, para el blanqueo de pastas madereras y de origen agrícola (pp. 1–26).

Sainz, F., Mas, A., and Torija, M. J. (2017). Effect of ammonium and amino acids on the growth of selected strains of Gluconobacter and Acetobacter. International Journal of Food Microbiology 242, 45–52.

Santiago-Urbina, J., Ventura-Canseco, L. M. C., Ayora-Talavera, T. R., Ovando-Chacón, S. L., Dendooven, L., Gutiérrez-Miceli, F. and Abud-Archila, M. (2011). Optimization of ethanol production from mango pulp using yeast strains isolated from “taberna”: A mexican fermented beverage. African Journal of Microbiology Research 5, 501–508.

Santos, S., Carbajo, J., Gómez, N., Ladero, M., and Villar, J. (2017). Modification of bacterial cellulose biofilms with xylan polyelectrolytes. Bioengineering 4, 1-13.

Santos, S.M., Carbajo, J.M., Gómez, N., Quintana, E., Ladero, M., Sánchez, A., Chinga-Carrasco, G., and Villar, J.C. (2016). Use of bacterial cellulose in degraded paper restoration. Part II: application on real samples. Journal of Materials Science 51, 1553–1561.

Shaheen, R., Riaz, M., Jamil, N., Pervaiz, H., Masood, Z., Iqbal, F., and Nasir, K. (2015). Determination of change in sugar content in healthy and diseased leaves of two mango varieties (Langra and Chaunsa) affected with quick decline disease. American-Eurasian Journal of Toxicological Sciences 7, 224–228.

Shezad, O., Khan, S., Khan, T., and Park, J. K. (2010). Physicochemical and mechanical characterization of bacterial cellulose produced with an excellent productivity in static conditions using a simple fed-batch cultivation strategy. Carbohydrate Polymers 82, 173–180.

Somda, M. K., Savadogo, A., Barro, N., Thonard, P., and Traore, S. A. (2011). Effect of minerals salts in fermentation process using mango residues as carbon source of bioethanol production. Asian Journal of Industrial Engineering 3, 29-38.

Stanbury, PF. Whitaker, A. and Hall, S. J. (2017). Principles of fermentation technology. 3rd Edition, Butterworth-Heinemann-Elservier, United Kingdom.

Stumpf, T. R., Pértile, R. A. N., Rambo, C. R., and Porto, L. M. (2013). Enriched glucose and dextrin mannitol-based media modulates fibroblast behavior on bacterial cellulose membranes. Materials Science and Engineering C 33, 4739–4745.

Surco-Laos, F., Torres, Y., Valle, M., and Panay, J. (2017). Efectos de liofilización sobre composición química y capacidad antioxidante en pulpa de cuatro variedades de Mangifera indica. Scielo 83, 412–419.

Ul-Islam, M., Khan, T., and Kon, J. (2012). Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification. Carbohydrate Polymers 88, 596–603.

Urbina, L., Hernández-Arriaga, A. M., Eceiza, A., Gabilondo, N., Corcuera, M. A., Prieto, M. A., and Retegi, A. (2017). By-products of the cider production: an alternative source of nutrients to produce bacterial cellulose. Cellulose 24, 2071–2082.

Vazquez, A., Foresti, M. L., Cerrutti, P., and Galvagno, M. (2013). Bacterial cellulose from simple and low cost production media by Gluconacetobacter xylinus. Journal of Polymers and the Environment 21, 545–554.

Winsor, C. P. (1932). The Gompertz curve as a growth curve. Proceedings of the National Academy of Sciences 18, 1–8.

Yamada, Y., Yukphan, P., Lan Vu, H. T., Muramatsu, Y., Ochaikul, D., Tanasupawat, S., and Nakagawa, Y. (2012). Description of Komagataeibacter gen. nov., with proposals of new combinations (Acetobacteraceae). The Journal of General and Applied Microbiology 58, 397–404.

Yang, H., Yan, R., Chen, H., Lee, D. H., and Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86, 1781–1788.

Zhang, H., Chen, C., Zhu, C., and Sun, D. (2016). Production of bacterial cellulose by Acetobacter xylinum: effects of carbon/nitrogen-ratio on cell growth and metabolite production. Cellulose Chemistry And Technologyl 50, 997–1003.

Zhong, C., Zhang, G. C., Liu, M., Zheng, X. T., Han, P. P., and Jia, S. R. (2013). Metabolic flux analysis of Gluconacetobacter xylinus for bacterial cellulose production. Applied Microbiology and Biotechnology 97, 6189–6199.
How to Cite
García-Sánchez, M., Robledo-Ortiz, J., Jiménez-Palomar, I., González-Reynoso, O., & González-García, Y. (2019). Production of bacterial cellulose by Komagataeibacter xylinus using mango waste as alternative culture medium. Revista Mexicana De Ingeniería Química, 19(2), 851-865.

Most read articles by the same author(s)