Composite material elaborated from conducting biopolymer cassava starch and polyaniline

  • A.A. Arrieta-Almario
  • J. M. Mendoza-Fandiño
  • M. S. Palencia-Luna
Keywords: electrolito sólido biopolímero, yuca, almodón, polianilina, material compuesto.

Abstract

This paper presents the preparation of a composite material synthesized from a conducting biopolymer of cassava starch and polyaniline. The composite material was made from the addition of aniline to the synthetic mixture of a conducting biopolymer of cassava starch with plasticizers (glycerol, glutaraldehyde and polyethylene glycol) and lithium perchlorate. The resulting composite material was a dark colored film with flexible and stable consistency. FTIR-ATR spectroscopy showed that there is a possible interaction by hydrogen bonds between the structures of the origin polymers, established between the OH groups of the starch and the NH group of the polyaniline. On the other hand, the electrochemical response of the composite material presented redox activity, with oxidation and reduction process well marked and intense in its signals. Additionally, the electrochemical signals of the composite material were stable when recording 50 consecutive cycles.

References

MacDiarmid, A.G. (2001). Synthetic metals: a novel role for organic polymers. Synthetic Metals 25(1), 11-22.

Shirakawa, H. (2001). The discovery of polyacetylene film: The dawning of an era of conducting polymers. Synthetic Metals 125(1), 3-10.

Heeger, A.J. (2001). Semiconducting and metallic polymers: the fourth generation of polymeric materials. Synthetic Metals 125(1), 23-42.

Lu, N., Li, L., Geng, D., Liu, M. (2018). A review for polaron dependent charge transport in organic semiconductor. Organic Electronics 61, 223–234.

Scotto, J., Florit, M. I., Posadas, D. (2017). pH dependence of the voltammetric response of Polyaniline. Journal of Electroanalytical Chemistry 785, 14–19.

Liao, G., Li, Q., Xu, Z. (2019). The chemical modification of polyaniline with enhanced properties: A review. Progress in Organic Coatings 126, 35–43.

Arrieta, A., Apetrei, C., Rodríguez-Méndez, De Saja, J. (2004). Voltammetric sensor array based on conducting polymer-modified electrodes for the discrimination of liquids. Electrochimica Acta 49(26), 4543–4551.

Zhang, X., Yang, Y., Li, Z., Wang, X., Wang, W., Yi, Z., Qiang, L., Qian, W., Hu, Z. (2019). Polyaniline-intercalated molybdenum disulfide composites for supercapacitors with high rate capability. Journal of Physics and Chemistry of Solids 130, 84-92.

Ji, J., Li, R., Li, H., Shu, Y., Li, Y., Qiu, S., He, C., Yang, Y. (2018). Phytic acid assisted fabrication of graphene/polyaniline composite hydrogels for high-capacitance supercapacitors. Composites Part B: Engineering 155, 132–137.

Yellappa, M., Sravan, J. S., Sarkar, O., Reddy, Y. V. R., & Mohan, S. V. (2019). Modified Conductive Polyaniline-Carbon Nanotube Composite Electrodes for Bioelectricity Generation and Waste Remediation. Bioresource Technology 284, 148-154.

Jevremović, A., Bober, P., Mičušík, M., Kuliček, J., Acharya, U., Pfleger, J., Milojević-Rakić, M., Krajišnik, D., Trchová, M., Stejskal, J., Ćirić-Marjanović, G. (2019). Synthesis and characterization of polyaniline/BEA zeolite composites and their application in nicosulfuron adsorption. Microporous and Mesoporous Materials 287, 234-245.

Meng, X., Han, Q., Sun, Y., & Liu, Y. (2018). Synthesis and microwave absorption properties of Ni0.5Zn0.5Fe2O4/BaFe12O19@polyaniline composite. Ceramics International 45(2), 2504-2508.

Gautam, V., Srivastava, A., Singh, K. P., & Yadav, V. L. (2015). Preparation and characterization of polyaniline, multiwall carbon nanotubes, and starch bionanocomposite material for potential bioanalytical applications. Polymer Composites 38(3), 496–506.

Janaki, V., Oh, B.-T., Vijayaraghavan, K., Kim, J.-W., Kim, S. A., Ramasamy, A. K., & Kamala-Kannan, S. (2012). Application of bacterial extracellular polysaccharides/polyaniline composite for the treatment of Remazol effluent. Carbohydrate Polymers 88(3), 1002–1008.

Gautam, V., Srivastava, A., Singh, K. P., & Yadav, V. L. (2016). Vibrational and gravimetric analysis of polyaniline/polysaccharide composite materials. Polymer Science Series A 58(2), 206–219.

Arrieta, A., Gañán, P. F., Márquez, S. E., & Zuluaga, R. (2011). Electrically conductive bioplastics from cassava starch. Journal of the Brazilian Chemical Society 22(6), 1170-1176.

Cheng, W. (2019). Preparation and properties of lignocellulosic fiber/CaCO3/thermoplastic starch composites. Carbohydrate Polymers 211, 204-208.

Arrieta, A., Palencia, M. (2016). Electrochemical study of composite biopolymer ppy/cassava starch. Revista Latinoamericana de Metalalurgía y Materiales 36(1), 26-35.

Wang, H., Kong, L., Ziegler, G. R. (2018). Fabrication of starch - Nanocellulose composite fibers by electrospinning. Food Hydrocolloids 90, 90-98.

Guz, L., Famá, L., Candal, R., Goyanes, S. (2017). Size effect of ZnO nanorods on physicochemical properties of plasticized starch composites. Carbohydrate Polymers 157, 1611–1619.

Núñez, Y., Arrieta, A., Segura, J., Bertel, S. (2016). Synthesis of an air-working trilayer artificial muscle using a conductive cassava starch biofilm (manihot esculenta, cranz) and polypyrrole (PPy). Journal of Physics: Conference Series, 687, 1-3.

Arrieta, P., Arrieta, A., Palencia, M. (2018). Polypyrrole/Cassava Starch/Polypyrrole Electrochemical Accumulator. Research Journal of Applied Sciences 13(8), 471-476.

Association of official analytical chemists. (1995). Official methods, of analysis of AOAC International. 16th ed. Gaithersburg: AOAC International.

Sun, Y., Wu, Z., Hu, B., Wang, W., Ye, H., Sun, Y., Ye, H., Sun, Y., Wang, X., Zeng, X. (2014). A new method for determining the relative crystallinity of chickpea starch by Fourier-transform infrared spectroscopy. Carbohydrate Polymers 108, 153–158.

Dankar, I., Haddarah, A., Omar, F. E. L., Pujolà, M., Sepulcre, F. (2018). Characterization of food additive-potato starch complexes by FTIR and X-ray diffraction. Food Chemistry 260, 7–12.

Vasques, C. T., Domenech, S. C., Barreto, P. L. M., & Soldi, V. (2010). Polypyrrole-modified starch films: structural, thermal, morphological and electrical characterization. e-Polymers, 10(1), 1-17.

Dai, L., Zhang, J., Cheng, F. (2019). Effects of starches from different botanical sources and modification methods on physicochemical properties of starch-based edible films, International Journal of Biological Macromolecules 132, 897-905.

Melánová, K., Beneš, L., Zima, V., Trchová, M., Stejskal, J. (2019). Microcomposites of zirconium phosphonates with a conducting polymer, polyaniline: Preparation, spectroscopic study and humidity sensing. Journal of Solid State Chemistry 276, 285-293.

Song, H., Zhang, C., Li, T., He, X., Han, Y., Wang, Y., Wang, Q. (2016). Synthesis and characterization of conductive polyaniline nanocomposite containing fluorene. High Performance Polymers 29(10), 1192-1198.

Prakash, R. (2001). Electrochemistry of polyaniline: Study of the pH effect and electrochromism. Journal of Applied Polymer Science 83(2), 378-385.

Su, W., Xu, J., & Ding, X. (2016). An Electrochemical pH Sensor Based on the Amino-Functionalized Graphene and Polyaniline Composite Film. IEEE Transactions on NanoBioscience 15(8), 812–819.
Published
2019-10-11
How to Cite
Arrieta-Almario, A., Mendoza-Fandiño, J., & Palencia-Luna, M. (2019). Composite material elaborated from conducting biopolymer cassava starch and polyaniline. Revista Mexicana De Ingeniería Química, 19(2), 707-715. https://doi.org/10.24275/rmiq/Mat765