Potato starch-based films: Effects of glycerol and montmorillonite nanoclay concentration

  • E. Medrano de Jara
  • E. García-Hernández
  • M.J. Quequezana-Bedregal
  • C.D. Arrieta-González
  • R. Salgado-Delgado
  • H. Lastarria-Tapia
  • J.A. Castañón-Vilca
Keywords: potato starch, nanoclay, glycerol, biofilm, mechanical properties.

Abstract

The films can be obtained from renewable resources such as polysaccharides, proteins, and lipids. Potato starch is a polysaccharide found in abundance, low cost, biodegradable, edible, and can be obtained from agro-industrial waste. In the present study, biodegradable films were obtained from potato starch mixed with montmorillonite nanoclay (MMT) as crosslinking agent and glycerin as a plasticizer; and thus characterize properties such as: permeability to water vapor, solubility, thickness, functional groups by FTIR,  analysis of the morphology by scanning electron microscopy (SEM), and mechanical properties. 9 mixtures combining different proportions of glycerol (1, 1.5 and 2 ml) with montmorillonite nanoclay (MMT) (0, 0.03 and 0.05 g) were prepared.

References

Aburto, J., Alric, I., Thiebaud, S., Borredon, E., Bikiaris, D., Prinos, J., & Panayiotou, C. (1999). Synthesis, characterization, and biodegradability of fatty‐acid esters of amylose and starch. Journal of Applied Polymer Science 74, 1440-1451. https://doi.org/10.1002/(SICI)1097-4628(19991107)74:6%3C1440::AID-APP17%3E3.0.CO;2-V
Alves, V. D., Mali, S., Beléia, A., & Grossmann, M. V. E. (2007). Effect of glycerol and amylose enrichment on cassava starch film properties. Journal of Food Engineering 78, 941-946. https://doi.org/10.1016/j.jfoodeng.2005.12.007.
Andersen, P. J., & Hodson, S. K. (2001). Thermoplastic Starch Compositions Incorporating a particulate filler component. N°. 6231970. Santa Barbara; CA:US E. Khashoggi Industries, LLC. https://patents.google.com/patent/US6231970B1/en
Bazargani-Guilani, K., & Rabbani, M. S. (2004). Mineralogy, chemistry and genesis of bentonite of the Eocene sediments at Aftar region, western Semnan. Iranian Journal of Crystallography and Mineralogy 12, 169-188.
Conley, R. (1979). Infrared Spectroscopy. Editorial Alhambra, Spain.
dos Reis, R. C. (2014). Mechanical properties, permeability and solubility of films composed of yam starch and glycerol. Interciencia 39, 410-415.
Flores-Martínez, N.L., Valdez-Fragoso, A, Jiménez-Islas, H, Pérez-Pérez, M.C. (2017). Physical, barrier, mechanical and microstructural properties of Aloe vera-gelatin-glycerol edible films incorporated with Pimenta dioica L. Merrill essential oil. Revista Mexicana de Ingeniería Química 16, 109-119.
Halley, P., McGlashan, S., & Gralton, J. (2006). Biodegradable polymer. N°. 7094817. Victoria; AU: Plantic Technologies Ltd. https://patents.google.com/patent/US7094817B2/en
Huang, M., Yu, J., & Ma, X. (2006). High mechanical performance MMT-urea and formamide-plasticized thermoplastic nanocomposites biodegradable cornstarch. Carbohydrate Polymers 63, 393-399. doi:10.1016/j.carbpol.2005.09.006
López, O. V., García, M. A., & Zaritzky, N. E. (2008). Film forming capacity of chemically modified corn starches. Carbohydrate Polymers 73, 573-581. doi:10.1016/j.carbpol.2007.12.023
Madejova, J. (2003). FTIR Technique in Clay Mineral Studies. Vibrational Spectroscopy 31, 1-10.
McGlashan, S. A., & Halley, P. J. (2003). Preparation and characterisation of biodegradable starch‐based nanocomposite materials. Polymer International 52, 1767-1773. https://doi.org/10.1002/pi.1287.
Mondragón, M., Mancilla, J. E., & Rodríguez‐González, F. J. (2008). Nanocomposites from plasticized high‐amylopectin, normal and high‐amylose maize starches. Polymer Engineering & Science 48, 1261-1267. https://doi.org/10.1002/pen.21084.
Oropeza, G., Montes, H., & Padrón, P. (2016). Biodegradable films based on starch: mechanical/functional properties and biodegradation. Revista Venezolana de Ciencia y Tecnología de Alimentos 7, 65-93.
Otey, F. H., & Westhoff, R. P. (1979). Biodegradable film compositions prepared from starch and copolymers of ethylene and acrylic acid. N° 4133784. Washington; DC: US United States of America as represent by the Secretary of Agriculture.
Park, H., Lee, W., Park, C., Cho, W., & Ha, C. (2003). Environmentally friendly polymer hybrids. Part I. Mechanical, thermal and barrier Propierties of thermoplastic starch / clay nanocomposites. Journal of Material Science 38, 909-915. https://doi.org/10.1023/A:1022308705231
Pretsch, E., Bühlmann, P., & Affolter, C. (2000). Structure determination of organic compounds. Springer-Verlag Berlin Heidelberg New York. Germany.
Rappoport, Z., Chemical Rubber Company, & CRC Press (1967). CRC handbook of tables for organic compound identification. Boca Raton: CRC Press. United States.
Rodríguez-Marín, M.J., Alvarez-Ramírez, J. and Bello-Pérez, L.A. (2016). Influence of storage time on mechanical properties of films made with montmorillonite/flour (unripe banana and rice) blends. Revista Mexicana de Ingeniería Química 15, 433-439.
Shin, B. Y., Jang, S. H., & Kim, B. S. (2011). Thermal, morphological, and mechanical properties of biobased and biodegradable blends of poly (lactic acid) and chemically modified thermoplastic starch. Polymer Engineering & Science 51, 826-834. https://doi.org/10.1002/pen.21896.
Tabak, A., Afsin, B., Caglar, B., & Koksal, E. (2007). Characterization and pillaring of a Turkish bentonite (Resadiye). Journal of Colloid and Interface Science 313, 5-11. https://doi.org/10.1016/j.jcis.2007.02.086
Tang, X., Alavi, S., & Herald, T. J. (2008). Barrier and mechanical properties of starch‐clay nanocomposite films. Cereal Chemistry 85, 433-439. https://doi.org/10.1094/CCHEM-85-3-0433.
Tyagi, B., Chudasama, C. D., & Jasra, R. V. (2006). Determination of structural modification in acid activated montmorillonite clay by FT-IR spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 64, 273-278. https://doi.org/10.1016/j.saa.2005.07.018.
Veiga-Santos, P., Oliveira, L. M., Cereda, M. P., Alves, A. J., & Scamparini, A. R. P. (2005). Mechanical properties, hydrophilicity and water activity of starch-gum films: effect of additives and deacetylated xanthan gum. Food Hydrocolloids 19, 341-349. DOI: 10.1016/j.foodhyd.2004.07.006.
Valdés, A., Mellinas, A. C., Ramos, M., Garrigós, M. C., & Jiménez, A. (2014). Natural additives and agricultural wastes in biopolymer formulations for food packaging. Frontiers in Chemistry 2, 6. https://doi.org/10.3389/fchem.2014.00006.
Chen, G. G., Qi, X. M., Li, M. P., Guan, Y., Bian, J., Peng, F., Yao, C. l. & Sun, R. C. (2015). Hemicelluloses/montmorillonite hybrid films with improved mechanical and barrier properties. Scientific Reports 5, 1-12.
Hassannia-Kolaee, M., Khodaiyan, F., & Shahabi-Ghahfarrokhi, I. (2016). Modification of functional properties of pullulan–whey protein bionanocomposite films with nanoclay. Journal of Food Science and Technology 53, 1294-1302.
Published
2019-10-04
How to Cite
Medrano de Jara, E., García-Hernández, E., Quequezana-Bedregal, M., Arrieta-González, C., Salgado-Delgado, R., Lastarria-Tapia, H., & Castañón-Vilca, J. (2019). Potato starch-based films: Effects of glycerol and montmorillonite nanoclay concentration. Revista Mexicana De Ingeniería Química, 19(2), 627-637. https://doi.org/10.24275/rmiq/Poli779

Most read articles by the same author(s)