Optimization of process variables for hyper-production of lovastatin from wild type Aspergillus terreus and its efficacy studies

  • T. Bashir
  • M. Asgher
  • F. Hussain
  • H. N. Bhatti
Keywords: Statin, Optimization, response surface methodology, Aspergillus terreus, Lignocellulosic substrate

Abstract

The objective of this study was the investigation of optimum conditions for lovastatin production from Aspergillus terreusthrough response surface methodology (RSM) with central composite design (CCD). The efficacy of produced and purified statinwas thenevaluated by using induced hypercholesterolemic rats. A. terreus was used to synthesize statin by using solid state fermentation on lignocellulose substrate, w

En este trabajo se investigaron las condiciones óptimas para la producción de lovastatina a partir de Aspergillus terreus usando una metodología de superficie de respuesta (RSM) con un diseño central compuesto (CCD). La eficacia de la estatina producida y purificada se evaluó en ratas en ratas con hipercolesterolemia inducida. Se empleó A. terreus para sintetizar la estatina mediante fermentación en estado sólido usando un sustrato lignocelulósico (paja de trigo).  Se realizaron un total de 30 experimentos por triplicado para los cuatro parámetros físicos en cinco niveles y como variable de respuesta se midió la producción de estatina por A. terreus. La producción máxima de estatina (60 mg/g) se logró a una temperature de 30 °C, pH 7.37, tamaño de inóculo de 4.5 mL tiempo de fermentación de 192 h. Lla hipercolesterolemia se indujo en las ratas de los grupos I, II and III, alimentándolas con una dieta alta en colesterol durante 30 días. El grupo III (grupo de tratamiento) fue dado la estatina producida por A. terreus de los días 15-30, encontrándose que al dí 30 había ocurrido una reducción significativa en el colesterol sérico (Incrementando el significativamente el nivel del colesterol de alta densidad (HDL) y disminuyendo significativamente el colesterol de baja densidad (LDL).

heat straw. Total 30 experiments were conducted in triplicate for four physical parameters, each at five levels and response (statin production) from A. terreus was measured. Maximum statin formation (60mg/g) obtained from A. terreus at temperature 30oC, pH 7.37, Inoculum size 4.5 mL and fermentation time 192 h. Hypercholesterolemia was induced in rats by feeding a high cholesterol diet in group I,II and group III from 0 to 30 days. From days 15-30, Group III (treatment group) was given statin extracted from A. terreus. Significant reduction in serum cholesterol level in group III rats treated with purified statin were observed at 30th day with significant increase in serum HDL levels along with significant reduction of serum LDL levels.

References

Abdullah, R., Qaiser, H., Iftikhar, T., Kaleem, A., Iqtedar, M., Saleem, F. and Haq, I. (2018). Application of response surface methodology for statistical optimization of lipase production by Penicillium sp. employing solid state fermentation. Revista Mexicana de Ingeniería Química 17, 863-875.

Atlı, B., Yamaç, M., Yıldız, Z. and Isikhuemhen, O. S. (2016). Statistical optimization of lovastatin production by Omphalotus olearius (DC.) singer in submerged fermentation. Preparative Biochemistry and Biotechnology 46, 254-260.

Balraj, J., Jairaman, K., Kalieswaran, V., & Jayaraman, A. (2018). Bioprospecting lovastatin production from a novel producer Cunninghamella blakesleeana. 3 Biotech, 8(8), 359.

Barrios, G. J. and Miranda, R. U. (2010). Biotechnological production and applications of statins. Applied Microbiology & Biotechnology 85, 869-83.

Baseman, J. G., Revere, D., Painter, I., Toyoji, M., Thiede, H. and Duchin, J. (2013). Public health communications and alert fatigue. BMC Health Services Research 13, 295.

Bizukojc, M., Pawlak, M., Boruta, T., Gonciarz, J. 2012. Effect of pH on biosynthesis of lovastatin and other secondary metabolites by Aspergillus terreus ATCC 20542. Journal of Biotechnology 162(2-3), 253-261.

Bizukojc, M. and Ledakowicz, S. (2008). Biosynthesis of lovastatin and (+)-geodin by Aspergillus terreus in batch and fed-batch culture in the stirred tank bioreactor. Biochemical Engineering Journal 42(3), 198-207.

Bucar, F., Wube, A. and Schmid, M. (2013). Natural product isolation–how to get from biological material to pure compounds. Natural Product Reports 30, 525-545.

Butler, M. S. (2008). Natural products to drugs: natural products derived compounds in clinical trials. Natural Product Reports 25, 475-516.

Chen, X. C., Bai, J. X., Cao, J. M., Li, Z. J., Xiong, J., Zhang, L. ... and Ying, H. J. (2009). Medium optimization for the production of cyclic adenosine 3′, 5′-monophosphate by Microbacterium sp. no. 205 using response surface methodology. Bioresource Technology 100(2), 919-924.

Chopra, V., Choksi, P. U. and Cavusoglu, E. (2007). Beyond lipid lowering: the anti-hypertensive role of statins. Cardiovascular Drugs and Therapy 21(3), 161-169.

Das, P., Mukherjee, S. and Sen, R. (2008). Antimicrobial potential of a lipopeptide biosurfactant derived from a marine Bacillus circulans. Journal of Applied Microbiology 104(6), 1675-1684.

de Brito, A. R., Reis, N. d. N., Tatielle, P. S., Bonomo, R. C.F., Uetanabaro, A. P. T., de Assis, S. A., da Saliva, E. G. P, Aguiar-Oliveira, E., Oliveira, J. R., Franco, M. (2017). Comparison between the univariate and multivariate analysis on the partial characterization of the endoglucanase produced in the solid state fermentation by Aspergillus oryzae ATCC 10124. Preparative Biochemistry and Biotechnology, 47(10), 977–985

Dey, G., Palit, S., Banerjee, R. and Maiti, B. R. (2002). Purification and characterization of maltooligosaccharide-forming amylase from Bacillus circulans GRS 313. Journal of Industrial Microbiology and Biotechnology 28(4), 193-200.

Dossey, A.T. (2010). Insects and their chemical weaponry: new potential for drug discovery. Natural Product Reports 27, 1737-1757.

Felix, A.C.S., Alvarez, L.D.G., Santana, R.A., Valasques Junior, G.L., Bezerra, M.A., de Oliveira Neto, N.M., de Oliveira Lima, E., de Oliveira Filho, A.A., Franco, M. and do Nascimento Junior, B.B. (2018). Application of experimental designs to evaluate the total phenolic content and antioxidant activity of cashew apple bagasse. Revista Mexicana de Ingeniería Química 17, 165-175.

Goswami, S., Bhunia, B. and Mandal, T. (2013). Optimization of media components for lovastatin production from Aspergillus terreus (JX081272) using Taguchi methodology. Journal of Bioprocess Engineering and Biorefinery 2(1), 46-53.

Hassan, A., Saleem, Y., Chaudhry, M.N., Asghar, A., Saleem, M., Nawaz, S., Syed, Q., Iqbal, M. S., and Shahzad, K. (2019). Optimization of process variables for increased production of lovastatin in Aspergillus terreus PU-PCSIR1 and its characterization. Pakistan Journal of Pharmaceutical Sciences 32(No. 1 (suppl)): 363-370.


Hossain, S., Hashimoto, M., Choudhury, E. K. N., Alam, N. S., Hussain, S., Hasan, M, ... and Mahmud, I. (2003). Dietary mushroom (Pleurotus ostreatus) ameliorates atherogenic lipid in hypercholesterolaemic rats. Clinical and Experimental Pharmacology and Physiology 30(7), 470-475.

Jahromi, M. F., Liang, J. B., Ho, Y. W., Mohamad, R., Goh, Y. M. and Shokryazdan, P. (2012). Lovastatin production by Aspergillus terreus using agro-biomass as substrate in solid state fermentation. Journal of Biomedical and Biotechnology 2012, 1–11.

Jung, M. J. and Wang, M. H. (2009). Effect of fermented soybean-derived Chung kook jang on diet-induced hyperlipidemia in Bio F1B hamsters. Food Biotechnology 23(1), 74-82.

Karacan, F., Ozden, U. and Karacan, S. (2007). Optimization of manufacturing conditions for activated carbon from Turkish lignite by chemical activation using response surface methodology. Applied Thermal Engineering 27, 1212–1218.

Kay-Shoemake, J. L. and Watwood, M. E. (1996). Limitations of the lignin peroxidase system of the white-rot fungus, Phanerochaete chrysosporium. Applied Microbiology and Biotechnology 46(4), 438-442.

Kirby. T. J. (1967) Cataracts produced by triparanol. (MER-29). Transactions of American Ophthalmology Society 65, 494–543.

Kumar M.S., Jana S.K., Senthil V., Shashanka V., Kumar S.V., Sadhukhan A.K. (2000). Repeated fed-batch process for improving lovastatin production. Process Biochemistry.;36:363–368.

Li, W., Cui, Y., Kushner, S. A., Brown, R. A., Jentsch, J. D., Frankland, P. W. ... and Silva, A. J. (2005). The HMG-CoA reductase inhibitor lovastatin reverses the learning and attention deficits in a mouse model of neurofibromatosis type 1. Current Biology 15(21), 1961-1967.

Liu, Q-Y., Zhou, T., Zhao,Y-Y., Chen , L., Gong, M.W., Xia, Q-W., Ying, M-G., Zheng, Q-H.,  and Zhang, Q-Q., (2015)  Antitumor Effects and Related Mechanisms of Penicitrinine A, a Novel Alkaloid with a Unique Spiro Skeleton from the Marine Fungus Penicillium citrinum Marine Drugs 2015, 13(8), 4733-4753

McBride, P. (2008). Triglycerides and risk for coronary artery disease. Current Atherosclerosis Reports 10(5), 386-390.

Mouafi, F. E., Ibrahim, G. S. and Elsoud, M. M. A. (2016). Optimization of lovastatin production from Aspergillus fumigatus. Journal of Genetic Engineering and Biotechnology 14(2), 253-259.

Mukhtar H, Ijaz SS, Ikram-ul-Haq (2014). Upstream and downstream processing of lovastatin by Aspergillus terreus. Cell Biochemistry and Biophysics 70(1): 309-20.

Nidhiya, K., Sathya, E. and Nitya, M. (2012). Extraction and purification of lovastatin from non-aflatoxigenic strains of Aspergillus flavus. International Journal of Biological and Pharmaceutical Research 4916-921.

Oliveira, P. C., de Brito, A. R., Pimentel, A. B., Soares, G. A., Pacheco, C. S. V., Santana, N. B., da Silva, E. G. P., de A. Fernandes, A. G., Ferreira, M. L. O., Oliveira, J. R. and Franco, M. (2019). Cocoa shell for the production of endoglucanase by Penicillium roqueforti ATCC10110 in solid state fermentation and biochemical properties. Revista Mexicana de Ingeniería Química 18, 777-787.

Pansuriya, R. C. and Singhal, R. S. (2010). Response surface methodology for optimization of production of lovastatin by solid state fermentation. Brazilian Journal of Microbiology 41(1), 164-172.

Pratheebaa, P., Periasamy, R. and Palvannan, T. (2013). Factorial design for optimization of laccase production from Pleurotus ostreatus IMI 395545 and laccase mediated synthetic dye decolorization. Indian Journal of Biotechnology 12, 236-245.

Ragunath, R., Radhakrishna, A., Angayarkanni, J. and Palaniswamy, M. (2012). Production and cytotoxic studies of lovastatin from Aspergillus niger PN2, and endophytic fungi isolated from Texus baccata. International Journal of Applied Biology and Pharmaceutical Technology 3, 342-351.

Reddy, D. S. R., Latha, D. P., Latha, K. P. J. (2011). Production of lovastatin by solid state fermentation by Penicillium funiculosum NCIM 1174. Drug Invent Today 3(6), 75-77.

Ruchir, C., Pansuriy, S., Rekha, and Singhal, (2010). Response Surface Methodology for optimization of production of lovastatin by solid state fermentation. Brazilian Journal of Microbiology 41, 164-172.

Samiee S.M., Moazami N., Haghighi S., Mohseni S., Mirdamadi A., Bakhtiari M.R. (2003) Screening of lovastatin production by filamentous fungi. Iranian Biomedical Journal;7:29–33

Santos, T.C. D., Abreu Filho, G., Brito, A. R. D., Pires, A. J. V., Bonomo, R. C. F., & Franco, M. (2016). Production and characterization of cellulolytic enzymes by Aspergillus niger and Rhizopus sp. By solid state fermentation of prickly pear. Revista Caatinga, 29(1), 222-233

Seenivasan, A., Subhagar, S., Aravindan, R, and Viruthagiri, T. (2008). Microbial production and biomedical applications of lovastatin. Indian Journal of Pharmaceutical Sciences 70 (6), 701.

Schneider, I., Kressel, G., Meyer, A., Krings, U., Berger, R. G. and Hahn, A. (2011). Lipid lowering effects of oyster mushroom (Pleurotus ostreatus) in humans. Journal of Functional Foods 3(1), 17-24.

Shitara, Y. and Sugiyama, Y. (2006). Pharmacokinetic and pharmacodynamic alterations of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors: drug–drug interactions and interindividual differences in transporter and metabolic enzyme functions. Pharmacology and Therapeutics 112(1), 71-105.

Suraiya, S., Kim, J. H., Tak, J. Y., Siddique, M. P., Young, C. J., Kim, J. K. and Kong, I. S. (2018). Influences of fermentation parameters on lovastatin production by Monascus purpureus using Saccharina japonica as solid fermented substrate. LWT Food, Science and Technology 92, 1–9.

WHO, 2007, Prevention of cardiovascular disease : guidelines for assessment and management of total cardiovascular risk. World Health Organization Publication 2007, WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland

Zhu, Y., Zhang, H., Zhang, Y. and Hang, F. (2011). Lignocellulose degradation, enzyme production and protein enrichment by Termetes versicolor during solid state fermentation of corn stover. African Journal of Biochemistry 10, 9182-9192.
Published
2019-11-16
How to Cite
Bashir, T., Asgher, M., Hussain, F., & Bhatti, H. (2019). Optimization of process variables for hyper-production of lovastatin from wild type Aspergillus terreus and its efficacy studies. Revista Mexicana De Ingeniería Química, 19(2), 929-939. https://doi.org/10.24275/rmiq/Bio782
Section
Biotechnology