Heat transfer simulation in corn kernel during nixtamalization process

  • E. García-Armenta
  • J. J. Caro-Corrales
  • K. Cronin
  • C. Reyes-Moreno
  • R. Gutiérrez-Dorado
Keywords: nixtamalization, corn kernel, thermophysical properties, heat transfer simulation, finite element analysis

Abstract

Maize nixtamalization is an alkaline cooking process that yields several food products. One of the critical parameters which are traditionally monitored in the process is temperature; however, to date the measurement of this variable has not been carried out inside the corn kernel itself. In this study, heat transfer inside a corn kernel during the nixtamalization process was simulated by means of finite element analysis (FEA) in a tridimensional (3D) model. In addition, thermophysical properties of corn kernel [thermal conductivity (k), specific heat capacity (Cp) and bulk density (ρb)] were determined as a function of temperature (25, 50 and 75 °C). The magnitudes of the thermophysical properties increased with temperature and the convective heat transfer coefficient (h) was computed as 2143 ± 407 W/m2·K (NBi =0.0094). Also, the simulation model was good (R2adj > 0.99) and predictions showed that the corn kernel’s surface was rapidly heated and the alkaline solution’s temperature (85 °C) at corn kernel’s center was achieved at 80 s of heating. Furthermore, some predictions in the anatomical parts of the corn kernel were performed. This study contributes to the understanding and improvement of the optimal conditions of the nixtamalization process which allows saving energy, having economic rewards and obtaining high quality nixtamalized products.

References

Abbaszadeh, R., Rajabipour, A., Sadrnia, H., Mahjoob, M.J., Delshad, M. and Ahmadi, H. (2014). Application of modal analysis to the watermelon through finite element modeling for use in ripeness assessment. Journal of Food Engineering 127, 80–84. https://doi.org/10.1016/j.jfoodeng.2013.11.020

Barnwal, P., Kadam, D.M. and Singh, K.K. (2012). Influence of moisture content on physical properties of maize. International Agrophysics 26, 331–334. https://doi.org/10.2478/v10247-012-0046-2

Caro-Corrales, J., Cronin, K., Abodayeh, K., Gutiérrez-López, G. and Ordorica-Falomir, C. (2002). Analysis of random variability in biscuit cooling. Journal of Food Engineering 54, 147–156.

Espinoza-Guevara, R., Caro-Corrales, J., Ordorica-Falomir, C., Zazueta-Morales, J., Vega-Garcia, M. and Cronin, K. (2010). Thermophysical properties of pulp and rind of papaya Cv . Maradol. International Journal of Food Properties 13, 65–74. https://doi.org/10.1080/10942910802180166

Estrada-Girón, Y., Aguilar, J., Morales-del-Rio, J.A., Valencia-Botin, A.J., Guerrero-Beltrán, J.A., Martínez-Preciado, A.H., Macías, E.R., Soltero, J.F.A., Solorza-Feria, J. and Fernández, V.V.A. (2014). Effect of moisture content and temperature, on the rheological, microstructural and thermal properties of masa (dough) from a hybrid corn (Zea mays sp.) variety. Revista Mexicana de Ingeniería Química 13, 429–446.

Gomez, M.H., Lee, J.K., McDonough, C.M., Waniska, R.D. and Rooney, L.W. (1992). Corn starch changes during tortilla and tortilla Chip processing. Cereal Chemistry 69, 275–279.

Gutiérrez-Cortez, E., Rojas-Molina, I., Zambrano-Zaragoza, M.L., Espinosa-Arbeláez, D.G., Rojas, A., García, J.C., Cornejo-Villegas, M.A. and Rodríguez-García, M.E. (2016). The mass transport phenomenon through pericarp during the nixtamalization process. Food and Bioproducts Processing 100, 477–486. https://doi.org/10.1016/j.fbp.2016.09.008

Gutiérrez-Dorado, R., Ayala-Rodríguez, A., Milán-Carrillo, J., López-Cervantes, J., Garzón-Tiznado, J., López-Valenzuela, J., Paredes-López, O. and Reyes-Moreno, C. (2008). Technological and nutritional properties of flours and tortillas from nixtamalized and extruded quality protein maize (Zea mays L.). Cereal Chemistry 85, 808–816.

Iribe-Salazar, R., Caro-Corrales, J., Hernández-Calderón, O., Zazueta-Niebla, J., Gutiérrez-Dorado, R., Carrazco-Escalante, M. and Vázquez-López, Y. (2015). Heat Transfer during blanching and hydrocooling of broccoli florets. Journal of Food Science 80, E2774–E2781. https://doi.org/10.1111/1750-3841.13109

Kustermann, M., Scherer, R. and Kutzbach, H.D. (1981). Thermal conductivity and ciffusivity of shelled corn and grain. Journal of Food Process Engineering 4, 137–153. https://doi.org/10.1111/j.1745-4530.1981.tb00252.x

Mohsenin, N.N. (1980). Thermal Properties of Foods and Agricultural Materials. CRC Press. Taylor and Francis Group, New York, USA.

Montanuci, F.D., Perussello, C.A., de Matos Jorge, L.M. and Matos Jorge, R.M. (2014). Experimental analysis and finite element simulation of the hydration process of barley grains. Journal of Food Engineering 131, 44–49. https://doi.org/10.1016/j.jfoodeng.2014.01.011

Moreno-Castro, L., Quintero-Ramos, A., Ruiz-Gutiérrez, M., Sánchez-Madrigal, M., Meléndez-Pizarro, C., Pérez-Reyes, I. and Lardizábal-Gutiérrez, D. (2015). Nixtamalization assisted with ultrasound: effect on mass transfer and physicochemical properties of nixtamal, masa and tortilla. Revista Mexicana de Ingeniería Química 14, 265–279.

Moretti, D., Biebinger, R., Bruins, M.J., Hoeft, B. and Kraemer, K. (2014). Bioavailability of iron, zinc, folic acid, and vitamin A from fortified maize. Annals of the New York Academy of Sciences 1312, 54–65. https://doi.org/10.1111/nyas.12297

Oillic, S., Lemoine, E., Gros, J. and Kondjoyan, A. (2011). Kinetic analysis of cooking losses from beef and other animal muscles heated in a water bath — Effect of sample dimensions and prior freezing and ageing. Meat Science 88, 338–346. https://doi.org/10.1016/j.meatsci.2011.01.001

Rosales, A., Agama-Acevedo, E., Bello-Pérez, L.A., Gutiérrez-Dorado, R. and Palacios-Rojas, N. (2016). Effect of traditional and extrusion nixtamalization on carotenoid retention in tortillas made from Provitamin A biofortified maize (Zea mays L.). Journal of Agricultural and Food Chemistry 64, 8289–8295. https://doi.org/10.1021/acs.jafc.6b02951

Ruiz-Gutiérrez, M.G., Quintero-Ramos, A., Meléndez-Pizarro, C.O., Lardizábal-Gutiérrez, D., Barnard, J., Márquez-Melendez, R. and Talamás-Abbud, R. (2010). Changes in mass transfer, thermal and physicochemical properties during nixtamalization of corn with and without agitation at different temperatures. Journal of Food Engineering 98, 76–83. https://doi.org/10.1016/j.jfoodeng.2009.12.010

Sabapathy, N.D. (2005). Thesis Heat and mass transfer during cooking of chickpea -measurements and computational simulation. University of Saskatchewan. Saskatoon, Saskatchewan, Canada.

Sahai, D., Mua, J.P., Surjewan, I., Buendia, M.O., Rowe, M. and Jackson, D.S. (2001). Alkaline processing (nixtamalization ) of white mexican corn hybrids for tortilla production: Significance of corn physicochemical characteristics and process conditions. Cereal Chemistry 78, 116–120.

Valderrama-Bravo, C., Rojas-Molina, A., Gutiérrez-Cortez, E., Rojas-Molina, I., Oaxaca-Luna, A., De la Rosa-Rincón, E. and Rodríguez-García, M.E. (2010). Mechanism of calcium uptake in corn kernels during the traditional nixtamalization process : Diffusion, accumulation and percolation. Journal of Food Engineering 98, 126–132. https://doi.org/10.1016/j.jfoodeng.2009.12.018

Yglesias, R., Parkhurst, A.M. and Jackson, D.S. (2005). Development of Laboratory Techniques to Mimic Industrial-Scale. Cereal Chemistry 82, 695–701.
Published
2019-10-18
How to Cite
García-Armenta, E., Caro-Corrales, J., Cronin, K., Reyes-Moreno, C., & Gutiérrez-Dorado, R. (2019). Heat transfer simulation in corn kernel during nixtamalization process. Revista Mexicana De Ingeniería Química, 19(2), 745-754. https://doi.org/10.24275/rmiq/Alim792
Section
Food Engineering

Most read articles by the same author(s)