Synthesis of TiO2-Au nanoparticles as sensors of 3-mercaptopropionic acid

  • K. Montoya-Villegas
  • R. M. Félix-Navarro
  • L. Rejón-García
  • C. Silva-Carrillo
  • B. Trujillo-Navarrete
  • S. W. Lin-Ho
  • E. A. Reynoso-Soto
Keywords: 3-mercaptopropionic acid, detection, gold nanoparticles, titanium dioxide.


3-Mercaptopropionic acid (3MPA) is an essential organic compound in aquatic environments given that has a fundamental role in the biogeochemistry of sulfur (S), is generated during the degradation of amino acids containing S, such as methionine in some plants and sequential demethylation of dimethylsulfoniopropionate (DMSP). The level of concentration of the 3MPA in aquatic environments is from nanomolar to micromolar. Also, 3MPA is toxic at certain concentrations and is used in experimentation to cause seizures in mice for scientific advances on epilepsy. Therefore, in this work, we report the developed of a novel portable, selective, and fast response sensor; based on an Au-TiO2 electrode for the quantification of 3MPA. The electrochemical technique of cyclic voltammetry was used to obtain the calibration curve of the sensor, with a limit of detection (LOD) of 50 nM in a linear range of 0 to 80 μM.


Balasubramanian, S. K.; Yang, L.; Yung, L.-Y. L.; Ong, C.-N.; Ong, W.-Y.; Yu, L. E., Characterization, purification, and stability of gold nanoparticles. Biomaterials 2010, 31 (34), 9023-9030. DOI: 10.1016/j.biomaterials.2010.08.012

Belcastro, M.; Marino, T.; Russo, N.; Sicilia, E., Structure and Coordination Modes in the Interaction between Cd2+ and 3-Mercaptopropionic Acid. The Journal of Physical Chemistry A 2004, 108 (40), 8407-8410. DOI:10.1021/jp047867u

Choi, H. C.; Jung, Y. M.; Kim, S. B., Size effects in the Raman spectra of TiO2 nanoparticles. Vib. Spectrosc 2005, 37 (1), 33-38. DOI:10.1016/j.vibspec.2004.05.006

Enrique, A.; Goicoechea, S.; Castano, R.; Taborda, F.; Rocha, L.; Orozco, S.; Girardi, E.; Bruno Blanch, L., New model of pharmacoresistant seizures induced by 3-mercaptopropionic acid in mice. Epilepsy research 2017, 129, 8-16. DOI: 10.1016/j.eplepsyres.2016.10.012

Frens, G., Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions. Nature Physical Science 1973, 241 (105), 20-22. DOI: 10.1038/physci241020a0

Garcia-Gomez, N. A.; Mosqueda, H. A.; Garcia-Gutierrez, D. I.; Sanchez, E. M., Electrochemical behavior of TiO2/carbon dual nanofibers. Electrochim. Acta 2014, 116, 19-25. DOI: 10.1016/j.electacta.2013.10.208

Gogoi, N.; Borah, G.; Gogoi, P. K.; Chetia, T. R., TiO2 supported gold nanoparticles: An efficient photocatalyst for oxidation of alcohol to aldehyde and ketone in presence of visible light irradiation. Chem. Phys. Lett. 2018, 692, 224-231. DOI: 10.1016/j.cplett.2017.12.015

Haiss, W.; Thanh, N. T. K.; Aveyard, J.; Fernig, D. G., Determination of Size and Concentration of Gold Nanoparticles from UV−Vis Spectra. Anal. Chem. 2007, 79 (11), 4215-4221. DOI: 10.1021/ac0702084

Henry, C., Microchip Capillary Electrophoresis: An Introduction. Methods in molecular biology (Clifton, N.J.) 2006, 339, 1-10. DOI: 10.1385/1-59745-076-6:1

Herszage, J. Oxidación de compuestos sulfurados en presencia de óxidos metálicos de interés en química de medio ambiente. Ph.D. thesis, Universidad de Buenos Aires, Buenos Aires, Argentina, 2001.

Ibrahim, A.; Mekprasart, W.; Pecharapa, W., Anatase/Rutile TiO2 composite prepared via sonochemical process and their photocatalytic activity. Materials Today: Proceedings 2017, 4 (5, Part 2), 6159-6165. DOI: 10.1016/j.matpr.2017.06.110

Ito, S.; Chen, P.; Comte, P.; Nazeeruddin, M. K.; Liska, P.; Péch, P.; Grätzel, M. P., Photovolt: Res. Appl. 2007, 15, 603–612. DOI: 10.1002/pip.768

Jain, P. K.; Lee, K. S.; El-Sayed, I. H.; El-Sayed, M. A., Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition:  Applications in Biological Imaging and Biomedicine. The Journal of Physical Chemistry B 2006, 110 (14), 7238-7248. DOI: 10.1021/jp057170o

Kong, D.; Kong, W.; Khan, Z. U. H.; Wan, P.; Chen, Y.; Yang, M., Determination of thiol content in fossil fuel by cyclic voltammetry using in situ Bismuth film electrode. Fuel 2016, 182, 266-271. DOI: 10.1016/j.fuel.2016.05.093

Li, J.; Wu, J.; Zhang, X.; Liu, Y.; Zhou, D.; Sun, H.; Zhang, H.; Yang, B., Controllable Synthesis of Stable Urchin-like Gold Nanoparticles Using Hydroquinone to Tune the Reactivity of Gold Chloride. The Journal of Physical Chemistry C 2011, 115 (9), 3630-3637. DOI: 10.1021/jp1119074

Li, X.; Zheng, W.; He, G.; Zhao, R.; Lui, D., Morphology control of TiO2 nanoparticle in microemulsion and its photocatalytic property. ACS Sustainable Chem. Eng. 2014, 2, 288-295. DOI: 10.1021/sc400328u

Loka Bharathi, P. A., Sulfur Cycle. In Encyclopedia of Ecology (Second Edition), Fath, B., Ed. Elsevier: Oxford, 2008; pp 192-199. DOI: 10.1016/B978-0-444-63768-0.00761-7

Mallick, S.; Ahmad, Z.; Touati, F.; Bhadra, J.; Shakoor, R. A.; Al-Thani, N. J., PLA-TiO2 nanocomposites: Thermal, morphological, structural, and humidity sensing properties. Ceram. Int. 2018, 44 (14), 16507-16513. DOI: 10.1016/j.ceramint.2018.06.068

Miller, J. C.; Miller, J. N., Statistics and chemometrics for analytical chemistry. 4th ed ed.; Prentice-Hall: Harlow, England; New York, 2000. ISBN: 0130228885

Mopper, K.; Taylor, B. F., Biogeochemical Cycling of Sulfur. In Organic Marine Geochemistry, Shon, M., Ed. American Chemical Society: Washington, D.C., United States, 1986; Vol. 305, pp 324-339. DOI: 10.1021/bk-1986-0305.ch019

Nuansing, W.; Ninmuang, S.; Jarernboon, W.; Maensiri, S.; Seraphin, S., Structural characterization and morphology of electrospun TiO2 nanofibers. Materials Science and Engineering: B 2006, 131 (1), 147-155. DOI: 10.1016/j.mseb.2006.04.030

Panigrahi, S.; Basu, S.; Praharaj, S.; Pande, S.; Jana, S.; Pal, A.; Ghosh, S. K.; Pal, T., Synthesis and Size-Selective Catalysis by Supported Gold Nanoparticles:  Study on Heterogeneous and Homogeneous Catalytic Process. The Journal of Physical Chemistry C 2007, 111 (12), 4596-4605. DOI: 10.1021/jp067554u

Peláez Abellán, E.; Rocha-Souza, L.; Guastaldi, A. C., Cathodic behavior of anodized titanium in simulated physiological. Latin American applied research 2011, 41 (3), 199-203.

Revermann, T.; Götz, S.; Karst, U., Quantitative analysis of thiols in consumer products on a microfluidic CE chip with fluorescence detection. ELECTROPHORESIS 2007, 28 (7), 1154-1160. DOI: 10.1002/elps.200600419

Rhieu, S. Y.; Reipa, V., Tuning the Size of Gold Nanoparticles with Repetitive Oxidation-reduction Cycles. American Journal of Nanomaterials 2015, 3 (1), 15-21. DOI: 10.12691/ajn-3-1-2

Salgado, P.; Visnevschi-Necrasov, T.; Kiene, R. P.; Azevedo, I.; Rocha, A. C. S.; Almeida, C. M. R.; Magalhães, C., Determination of 3-mercaptopropionic acid by HPLC: A sensitive method for environmental applications. J. Chromatogr. B 2015, 992, 103-108. DOI: 10.1016/j.jchromb.2015.04.008

Sandu, T., Shape effects on localized surface plasmon resonances in metallic nanoparticles. J. Nanopart. Res. 2012, 14 (6), 905. DOI: 10.1007/s11051-012-0905-6

Vairavamurthy, A.; Mopper, K., Geochemical formation of organosulphur compounds (thiols) by addition of H2S to sedimentary organic matter. Nature 1987, 329, 623-625. DOI: 10.1038/329623a0

Wei, X.; Zhu, G.; Fang, J.; Chen, J., Synthesis, Characterization, and Photocatalysis of Well-Dispersible Phase-Pure Anatase TiO2 Nanoparticles. 2013; Vol. 2013. DOI: 10.1155/2013/726872

Zhang, Z.; Zhou, F.; Lavernia, E. J., On the analysis of grain size in bulk nanocrystalline materials via x-ray diffraction. Metallurgical and Materials Transactions A 2003, 34 (6), 1349-1355. DOI: 10.1007/s11661-003-0246-2
How to Cite
Montoya-Villegas, K., Félix-Navarro, R., Rejón-García, L., Silva-Carrillo, C., Trujillo-Navarrete, B., Lin-Ho, S., & Reynoso-Soto, E. (2019). Synthesis of TiO2-Au nanoparticles as sensors of 3-mercaptopropionic acid. Revista Mexicana De Ingeniería Química, 19(2), 941-952.
Environmental Engineering