Influence of ethyl cellulose in a multicomponent mixture (sorbitan monopalmitate-vegetable oils) on physicochemical properties of organogels

  • M. García-Andrade
  • R. F. González-Laredo
  • N. E. Rocha-Guzmán
  • W. Rosas-Flores
  • M. R. Moreno-Jimenez
  • E.A. Peña-Ramos
  • J. A. Gallegos-Infante http://orcid.org/0000-0001-6450-0483
Keywords: nucleation, organogelation, ethyl cellulose, vegetable oils

Abstract

The modification of vegetable oils from liquid to solid state gel type is achieved by organogelation, the first phenomenon experienced is nucleation that can be spectrophotometrically evaluated and obtain thermodynamic properties. The objective of the work was to evaluate the solid formation from nucleation to macroscopic properties of the mixture: sorbitan monopalmitate and ethyl cellulose in canola, olive and coconut vegetable oils. Nucleation kinetics, solid growth analysis, oscillatory rheology characterization, thermal properties by differential scanning calorimetry and microstructural formation by optical microscopy were evaluated. Non-isothermal nucleation kinetics indicated short induction times for canola and prolonged in coconut, the inclusion of ethyl cellulose involved a more compact solid formation in the systems, without modifying the growth parameters, the coconut organogel was more sensitive to thermal changes. Non-isothermal nucleation kinetics are useful for determining the thermodynamic properties of organogels and the closest to thermodynamic equilibrium, the inclusion of ethyl cellulose being decisive; same that does not influence formation speed and solid growth. The multicomponent gels obtained showed that the structural differences depend on the concentration of the mixture that includes ethyl cellulose, presenting more compact structures and thereby more resistant gels.

Keywords: nucleation, organogelation, ethyl cellulose, vegetable oils.

References

Avrami, M. (1939). Kinetics of phase change. I general theory. J. Chem. Phys, vol. 7 (12), pp.1103–1112. https://doi.org/10.1063/1.1750380

Braudo, E., Muratalieva, I., Plashchina, I., Tolstoguzov, V. (1991). Correlation between the temperatures of formation/breakdown of the gel network and conformational transitions of agarose macromolecules. Carbohydr Polym, vol 15 (3), pp. 317–321. https://doi.org/10.1016/0144-8617(91)90046-F

Buerkle, L.,Rowan, S. (2012). Supramolecular gels formed from multi-component low molecular weight species w. Chem. Soc. Rev., pp. 6089-6102.
https://doi.org/10.1039/c2cs35106d

Burkhardt, M., Kinzel, S.,Gradzielski, M. (2009). Macroscopic properties and microstructure of HSA based organogels: Sensitivity to polar additives. J Colloid Interf Sci, vol. 331(2), 514–521. https://doi.org/10.1016/j.jcis.2008.11.078

Cerqueira, M., Fasolin, L., Picone, C., Pastrana, L., Cunha, R.,Vicente, A.(2017). Structural and mechanical properties of organogels: Role of oil and gelator molecular structure. Food Res Int, vol. 96, pp.161–170. https://doi.org/10.1016/j.foodres.2017.03.021

Cisneros, A., Mazzanti, G., Campos, R., Marangoni, A. (2006). Polymorphic transformation in mixtures of high- and low-melting fractions of milk fat. J Agric Food
Chem, vol. 54, pp. 6030–6033. https://doi.org/10.1021/jf0600814

Dassanayake, L. S. K., Kodali, D. and, Ueno, S. (2011). Formation of oleogels based on edible lipid materials. Curr. Opin. Colloid Interface Sci, vol. 16 (5), pp. 432–439.

Davidovich-pinhas, M., Barbut, S., Marangoni, A. (2015). The role of surfactants on ethylcellulose oleogel structure and mechanical properties. Carbohydr Polym, vol. 127, pp. 355–362. https://doi.org/10.1016/j.carbpol.2015.03.085

Davidovich-Pinhas, M., Barbut, S., & Marangoni, A. G. (2016). Development, Characterization, and Utilization of Food-Grade Polymer Oleogels. Annu Rev Food Sci
Technol, vol. 7(1), pp. 65–91. https://doi.org/10.1146/annurev-food-041715-033225

Gravelle, A., Davidovich-Pinhas, M., Zetzl, A., Barbut, S., Marangoni, A.(2016). Influence of solvent quality on the mechanical strength of ethylcellulose oleogels. Carbohydr Polym, vol. 135, pp.169–179. https://doi.org/10.1016/j.carbpol.2015.08.050

Grotenhuis, E., van Aken, G., van Malssen, K., Schenk, H. (1999). Polymorphism of milk fat studied by differential scanning calorimetry and real-time x-ray powder diffraction. J Am Oil Chem Soc, vol. 76(9), pp.1031–1039. https://doi.org/10.1007/s11746-999-0201-5

Jibry, N., Sarwar, T., Murdan, S. (2006). Amphiphilogels as drug carriers: effects of drug incorporation on the gel and on the active drug. J Pharm Pharmacol, vol. 58(2), pp.187–194. https://doi.org/10.1211/jpp.58.2.0005

Joshi, B., Beccard, S.,Vilgis, T. A. (2018). Fractals in crystallizing food systems. Curr Opin Food Sci, pp.1–14. https://doi.org/10.1016/j.cofs.2018.05.009

Kavanagh, G., Ross-Murphy, S. (1998). Rheological characterisation of polymer gels. Prog Polym Sci, vol. 23(3), pp.533–562. https://doi.org/10.1016/S0079-6700(97)00047-6

Laredo, T., Barbut, S., Marangoni, A. (2011). Molecular interactions of polymer oleogelation, Soft Matter, vol. 7, pp. 2734–2743. https://doi.org/10.1039/c0sm00885k

Lu, P.,Weitz, D. (2013). Colloidal particles : crystals , glasses , and gels. Annu. Rev. Condens. Matter Phys, vol. 4(1), pp. 217–233. https://doi.org/10.1146/annurev-conmatphys-030212-184213

Mangione, M., Giacomazza, D., Bulone, D., Martorana, V., San Biagio, P.(2003). Thermoreversible gelation of κ-Carrageenan: Relation between conformational transition and aggregation. Biophys Chem, vol. 104(1), pp. 95–105. https://doi.org/10.1016/S0301-4622(02)00341-1

Miyoshi, E., Takaya, T.,Nishinari, K. (1996). Rheological and thermal studies of gel-sol transition in gellan gum aqueous solutions. Carbohydr Polym, vol. 30(2–3), pp. 109–119. https://doi.org/10.1016/S0144-8617(96)00093-8

Murdan, S., Gregoriadis, G., Florence, A. (1999). Novel sorbitan monostearate organogels. J. Pharm. Sci. vol. 88, pp. 608-614. https://doi.org/10.1021/js980342r

Patel, A. R. (2017). A colloidal gel perspective for understanding oleogelation. Curr Opin Food Sci, vol.15, pp.1–7. 10.1016/j.cofs.2017.02.013

Rocha, J., Lopes, J., Mascarenhas, M., Arellano, D., Guerreiro, L., da Cunha, R. (2013). Thermal and rheological properties of organogels formed by sugarcane or candelilla wax in soybean oil. Food Res Int, vol.50(1), pp. 318–323. https://doi.org/10.1016/j.foodres.2012.10.043

Rogers, M., Marangoni, A. (2009). Solvent-Modulated Nucleation and Crystallization Kinetics of 12-Hydroxystearic Acid : A Nonisothermal Approach †, Langmuir, vol. 25(5), pp 8556–8566. https://doi.org/10.1021/la8035665

Sánchez, R., Franco, J., Delgado, M., Valencia, C., Gallegos, C. (2011). Rheology of oleogels based on sorbitan and glyceryl monostearates and vegetable oils for lubricating applications. Grasas y Aceites, vol. 62(3), pp. 328–336. https://doi.org/10.3989/gya.113410

Sciortino, F., Buldyrev, S., Michele, C., Foffi, G., Ghofraniha, N., La Nave, E.,Zaccarelli, E. (2005). Routes to colloidal gel formation. Comput Phys Commun, vol. 169, 166–171. https://doi.org/10.1016/j.cpc.2005.03.038

Singh, V., Pramanik, K., Ray, S., Pal, K. (2015). Development and Characterization of Sorbitan Monostearate and Sesame Oil-Based Organogels for Topical Delivery of Antimicrobials. AAPS Pharm Sci Tech, vol. 16(2), pp. 293–305. https://doi.org/10.1208/s12249-014-0223-7

Terech, P., Weiss, R. (1997). Low molecular mass gelators of organic liquids and the properties of their gels. Chem Rev, vol. 97(8), pp. 3133–3160. https://doi.org/10.1021/cr9700282

Toro-Vazquez, J; Gallegos-Infante, J. (1996) Viscosity and its relationship to crystallization in a binary system of saturated triacylglycerides and sesame seed oil. J. Am. Oil Chem.' Soc, vol 73, pp. 1237-1246. https://doi.org/10.1007/BF02525452

Toro-Vazquez, J. F., Morales-Rueda, J., Torres-Martínez, A., Charó-Alonso, M., Mallia, V., Weiss, R. G. (2013). Cooling rate effects on the microstructure, solid content, and rheological properties of organogels of amides derived from stearic and (R)-12- hydroxystearic acid in vegetable oil. Langmuir, vol. 29 (25), pp. 7642–7654. https://doi.org/10.1021/la400809a

Wan Nik, W., Ani, F., Masjuki, H., Eng Giap, S. (2005). Rheology of bio-edible oils according to several rheological models and its potential as hydraulic fluid. Ind Crops Prod., vol. 22, pp. 249–255. https://doi.org/10.1016/j.indcrop.2005.01.005

Zhang, E., Zhao, Y., Yang, W., Chen, H., Liu, W., Dai, X., Ji, X. (2018).Viscoelastic behaviour and relaxation modes of one polyamic acid organogel studied by rheometers and dynamic light scattering †. Soft Matter, vol. 14, pp. 73–82. https://doi.org/10.1039/C7SM02185B

Zhu, G., Dordick, J. S. (2006). Solvent Effect on organogel formation by low molecular weight molecules. Chem Mater, vol. 18(25), pp. 5988–5995. https://doi.org/10.1021/cm0619297
Published
2019-12-06
How to Cite
García-Andrade, M., González-Laredo, R., Rocha-Guzmán, N., Rosas-Flores, W., Moreno-Jimenez, M., Peña-Ramos, E., & Gallegos-Infante, J. (2019). Influence of ethyl cellulose in a multicomponent mixture (sorbitan monopalmitate-vegetable oils) on physicochemical properties of organogels. Revista Mexicana De Ingeniería Química, 19(2), 953-968. https://doi.org/10.24275/rmiq/Alim801
Section
Food Engineering

Most read articles by the same author(s)