Influence of ethyl cellulose in a multicomponent mixture (sorbitan monopalmitate-vegetable oils) on physicochemical properties of organogels

  • M. García-Andrade
  • R. F. González-Laredo
  • N. E. Rocha-Guzmán
  • W. Rosas-Flores
  • M. R. Moreno-Jimenez
  • E.A. Peña-Ramos
  • J. A. Gallegos-Infante
Keywords: nucleation, organogelation, ethyl cellulose, vegetable oils


The modification of vegetable oils from liquid to solid state gel type is achieved by organogelation, the first phenomenon experienced is nucleation that can be spectrophotometrically evaluated and obtain thermodynamic properties. The objective of the work was to evaluate the solid formation from nucleation to macroscopic properties of the mixture: sorbitan monopalmitate and ethyl cellulose in canola, olive and coconut vegetable oils. Nucleation kinetics, solid growth analysis, oscillatory rheology characterization, thermal properties by differential scanning calorimetry and microstructural formation by optical microscopy were evaluated. Non-isothermal nucleation kinetics indicated short induction times for canola and prolonged in coconut, the inclusion of ethyl cellulose involved a more compact solid formation in the systems, without modifying the growth parameters, the coconut organogel was more sensitive to thermal changes. Non-isothermal nucleation kinetics are useful for determining the thermodynamic properties of organogels and the closest to thermodynamic equilibrium, the inclusion of ethyl cellulose being decisive; same that does not influence formation speed and solid growth. The multicomponent gels obtained showed that the structural differences depend on the concentration of the mixture that includes ethyl cellulose, presenting more compact structures and thereby more resistant gels.

Keywords: nucleation, organogelation, ethyl cellulose, vegetable oils.


Avrami, M. (1939). Kinetics of phase change. I general theory. J. Chem. Phys, vol. 7 (12), pp.1103–1112.

Braudo, E., Muratalieva, I., Plashchina, I., Tolstoguzov, V. (1991). Correlation between the temperatures of formation/breakdown of the gel network and conformational transitions of agarose macromolecules. Carbohydr Polym, vol 15 (3), pp. 317–321.

Buerkle, L.,Rowan, S. (2012). Supramolecular gels formed from multi-component low molecular weight species w. Chem. Soc. Rev., pp. 6089-6102.

Burkhardt, M., Kinzel, S.,Gradzielski, M. (2009). Macroscopic properties and microstructure of HSA based organogels: Sensitivity to polar additives. J Colloid Interf Sci, vol. 331(2), 514–521.

Cerqueira, M., Fasolin, L., Picone, C., Pastrana, L., Cunha, R.,Vicente, A.(2017). Structural and mechanical properties of organogels: Role of oil and gelator molecular structure. Food Res Int, vol. 96, pp.161–170.

Cisneros, A., Mazzanti, G., Campos, R., Marangoni, A. (2006). Polymorphic transformation in mixtures of high- and low-melting fractions of milk fat. J Agric Food
Chem, vol. 54, pp. 6030–6033.

Dassanayake, L. S. K., Kodali, D. and, Ueno, S. (2011). Formation of oleogels based on edible lipid materials. Curr. Opin. Colloid Interface Sci, vol. 16 (5), pp. 432–439.

Davidovich-pinhas, M., Barbut, S., Marangoni, A. (2015). The role of surfactants on ethylcellulose oleogel structure and mechanical properties. Carbohydr Polym, vol. 127, pp. 355–362.

Davidovich-Pinhas, M., Barbut, S., & Marangoni, A. G. (2016). Development, Characterization, and Utilization of Food-Grade Polymer Oleogels. Annu Rev Food Sci
Technol, vol. 7(1), pp. 65–91.

Gravelle, A., Davidovich-Pinhas, M., Zetzl, A., Barbut, S., Marangoni, A.(2016). Influence of solvent quality on the mechanical strength of ethylcellulose oleogels. Carbohydr Polym, vol. 135, pp.169–179.

Grotenhuis, E., van Aken, G., van Malssen, K., Schenk, H. (1999). Polymorphism of milk fat studied by differential scanning calorimetry and real-time x-ray powder diffraction. J Am Oil Chem Soc, vol. 76(9), pp.1031–1039.

Jibry, N., Sarwar, T., Murdan, S. (2006). Amphiphilogels as drug carriers: effects of drug incorporation on the gel and on the active drug. J Pharm Pharmacol, vol. 58(2), pp.187–194.

Joshi, B., Beccard, S.,Vilgis, T. A. (2018). Fractals in crystallizing food systems. Curr Opin Food Sci, pp.1–14.

Kavanagh, G., Ross-Murphy, S. (1998). Rheological characterisation of polymer gels. Prog Polym Sci, vol. 23(3), pp.533–562.

Laredo, T., Barbut, S., Marangoni, A. (2011). Molecular interactions of polymer oleogelation, Soft Matter, vol. 7, pp. 2734–2743.

Lu, P.,Weitz, D. (2013). Colloidal particles : crystals , glasses , and gels. Annu. Rev. Condens. Matter Phys, vol. 4(1), pp. 217–233.

Mangione, M., Giacomazza, D., Bulone, D., Martorana, V., San Biagio, P.(2003). Thermoreversible gelation of κ-Carrageenan: Relation between conformational transition and aggregation. Biophys Chem, vol. 104(1), pp. 95–105.

Miyoshi, E., Takaya, T.,Nishinari, K. (1996). Rheological and thermal studies of gel-sol transition in gellan gum aqueous solutions. Carbohydr Polym, vol. 30(2–3), pp. 109–119.

Murdan, S., Gregoriadis, G., Florence, A. (1999). Novel sorbitan monostearate organogels. J. Pharm. Sci. vol. 88, pp. 608-614.

Patel, A. R. (2017). A colloidal gel perspective for understanding oleogelation. Curr Opin Food Sci, vol.15, pp.1–7. 10.1016/j.cofs.2017.02.013

Rocha, J., Lopes, J., Mascarenhas, M., Arellano, D., Guerreiro, L., da Cunha, R. (2013). Thermal and rheological properties of organogels formed by sugarcane or candelilla wax in soybean oil. Food Res Int, vol.50(1), pp. 318–323.

Rogers, M., Marangoni, A. (2009). Solvent-Modulated Nucleation and Crystallization Kinetics of 12-Hydroxystearic Acid : A Nonisothermal Approach †, Langmuir, vol. 25(5), pp 8556–8566.

Sánchez, R., Franco, J., Delgado, M., Valencia, C., Gallegos, C. (2011). Rheology of oleogels based on sorbitan and glyceryl monostearates and vegetable oils for lubricating applications. Grasas y Aceites, vol. 62(3), pp. 328–336.

Sciortino, F., Buldyrev, S., Michele, C., Foffi, G., Ghofraniha, N., La Nave, E.,Zaccarelli, E. (2005). Routes to colloidal gel formation. Comput Phys Commun, vol. 169, 166–171.

Singh, V., Pramanik, K., Ray, S., Pal, K. (2015). Development and Characterization of Sorbitan Monostearate and Sesame Oil-Based Organogels for Topical Delivery of Antimicrobials. AAPS Pharm Sci Tech, vol. 16(2), pp. 293–305.

Terech, P., Weiss, R. (1997). Low molecular mass gelators of organic liquids and the properties of their gels. Chem Rev, vol. 97(8), pp. 3133–3160.

Toro-Vazquez, J; Gallegos-Infante, J. (1996) Viscosity and its relationship to crystallization in a binary system of saturated triacylglycerides and sesame seed oil. J. Am. Oil Chem.' Soc, vol 73, pp. 1237-1246.

Toro-Vazquez, J. F., Morales-Rueda, J., Torres-Martínez, A., Charó-Alonso, M., Mallia, V., Weiss, R. G. (2013). Cooling rate effects on the microstructure, solid content, and rheological properties of organogels of amides derived from stearic and (R)-12- hydroxystearic acid in vegetable oil. Langmuir, vol. 29 (25), pp. 7642–7654.

Wan Nik, W., Ani, F., Masjuki, H., Eng Giap, S. (2005). Rheology of bio-edible oils according to several rheological models and its potential as hydraulic fluid. Ind Crops Prod., vol. 22, pp. 249–255.

Zhang, E., Zhao, Y., Yang, W., Chen, H., Liu, W., Dai, X., Ji, X. (2018).Viscoelastic behaviour and relaxation modes of one polyamic acid organogel studied by rheometers and dynamic light scattering †. Soft Matter, vol. 14, pp. 73–82.

Zhu, G., Dordick, J. S. (2006). Solvent Effect on organogel formation by low molecular weight molecules. Chem Mater, vol. 18(25), pp. 5988–5995.
How to Cite
García-Andrade, M., González-Laredo, R., Rocha-Guzmán, N., Rosas-Flores, W., Moreno-Jimenez, M., Peña-Ramos, E., & Gallegos-Infante, J. (2019). Influence of ethyl cellulose in a multicomponent mixture (sorbitan monopalmitate-vegetable oils) on physicochemical properties of organogels. Revista Mexicana De Ingeniería Química, 19(2), 953-968.
Food Engineering

Most read articles by the same author(s)