Sulfate reduction in a sludge gradually acclimated to acetate as the sole electron donor and its potential application as inoculum in a microbial fuel cell

  • J. R. González-Paz
  • A. Ordaz
  • J. Jan-Roblero
  • L. C. Fernández-Linares
  • C. Guerrero-Barajas
Keywords: sulfate reduction, acetate, microbial fuel cell

Abstract

The aim of the present work was to obtain a sulfidogenic sludge capable of thriving with acetate and evaluate its potential application as a source of microorganisms in a microbial fuel cell (MFC). The results showed that sulfate (SO4-2) to sulfide (HS-) conversion increased from 74 ± 0.39 % with a fed consisting of a mixture acetate:butyrate, to 85 ± 0.34 % with a fed containing only acetate. The sulfate removal rate (SRR) was of 73.14 ± 2.08 mg SO4-2 gVSS-1 L-1 h-1 and sulfate reducing activity (SRA) 6.46 ± 1.25 mg COD-H2S gVSS-1L-1h-1 with the mixture and  SRR 70.51 ± 1.58 mg SO4-2 gVSS-1 L-1 h-1 ; SRA 7.67 ± 1.00 mg COD-H2S gVSS-1 L-1 h-1 with acetate. The COD removal increased from 66 ± 0.8% with the mixture to 81 ± 0.39 %, with acetate. The open circuit voltage increased from 0.668 to 0.788 V with acetate. The results suggested that this sludge could be utilized to recover energy that could be eventually susceptible to storage for further utilization while reducing sulfate and avoiding accumulation of acetate.

Author Biography

A. Ordaz

Laboratorio de Bioingeniería Ambiental, Unidad de Estudios Superiores de Tultitlán, Universidad Mexiquense del Bicentenario, Av. Ex-Hacienda de Portales s/n Villa Esmeralda, Tultitlán de Mariano Escobedo, Estado de México, 54910, México

References

Abdeen, S., Di, W., Hui, L., Chen, G.H. and van Loosdrecht, M.C.M. (2010). Fecal coliform removal in a sulfate reducing autotrophic denitrification and nitrification integrated (SANI) process for saline sewage treatment water. Water Science and Technology 62, 2564

Angelov, A., Bratkova, S. and Loukanov, A. (2013). Microbial fuel cell based on electroactive sulfate-reducing biofilm. Energy Conversion and Management 67, 283-286. https://doi.org/10.1016/j.enconman.2012.11.024

Al-Zuhair, S., El-Naas, M. H. and Al-Hassani, H. (2008). Sulfate inhibition effect on sulfate reducing bacteria. Journal of Biochemical Technology 1, 39-44.

APHA. (2005). Standard Methods for examination of water and wastewater. American Public Health Association, USA.

Barton, L. and Hamilton, W. (2007). Sulphate-reducing bacteria: environmental and engineered systems. Vasa. https://doi.org/10.1017/CBO9780511541490

Bernardez, L., Lima, L. R. P., Ramos, C. L. S. and Almeida, P. F. (2012). A kinetic analysis of microbial sulfate eeduction in an upflow packed-bed anaerobic bioreactor. Mine Water and the Environment 31, 62-68. https://doi.org/10.1007/s10230-012-0170-z

Celis, L. B., Villa-Gómez, D., Alpuche-Solís, A. G., Ortega-Morales, B. O. and Razo-Flores, E. (2009). Characterization of sulfate-reducing bacteria dominated surface communities during start-up of a down-flow fluidized bed reactor. Journal of Industrial Microbiology and Biotechnology 36, 111-121. https://doi.org/10.1007/s10295-008-0478-7

Colleran, E., Finnegan, S. and Lens, P. 1995. Anaerobic treatment of sulfate-containing waste streams. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology 67, 29-46. ://WOS:A1995QG66600003

Chou, T. Y., Whiteley, C. G., Lee, D. J. and Liao, Q. (2013). Control of dual-chambered microbial fuel cell by anodic potential: Implications with sulfate reducing bacteria. International Journal of Hydrogen Energy 38, 15580-15589. https://doi.org/10.1016/j.ijhydene.2013.04.074

García-Solares, S.M., Ordaz, A., Monroy-Hermosillo. O., Jan-Roblero, J. and Guerrero-Barajas, C. (2014). High sulfate reduction efficiency in a UASB using an alternative source of sulfidogenic sludge derived from hydrothermal vents sediments. Applied Biochemistry and Biotechnology 174, 2919-2940. doi:10.1007/s12010-014-1237-z.

Gacitúa, M. A., Muñoz, E. and González, B. (2018). Bioelectrochemical sulphate reduction on batch reactors: Effect of inoculum-type and applied potential on sulphate consumption and pH. Bioelectrochemistry 119, 26-32. https://doi.org/10.1016/j.bioelechem.2017.08.006

García-Depraect, O., Guerrero-Barajas, C., Jan-Roblero, J. and Ordaz, A. (2017). Characterization of a marine microbial community used for enhanced sulfate reduction and copper precipitation in a two-step process. Applied Biochemistry and Biotechnology 182, 452-467. https://doi:10.1007/s12010-016-2337-8

Guerrero-Barajas, C. and García-Peña, E. I. (2010). Evaluation of enrichments of sulfate reducing bacteria from pristine hydrothermal vents sediments as potential inoculum for reducing trichloroethylene. World Journal of Microbiology and Biotechnology 26, 21-32.

Guerrero-Barajas, C., Ordaz, A., Garibay-Orijel, C., García Solares, S.M., Bastida-González, F. and Zárate-Segura, P.B. (2014). Enhanced sulfate reduction and trichloroethylene (TCE) biodegradation in a UASB reactor operated with a sludge developed from hydrothermal vents sediments: Process and microbial ecology. International Biodeterioration and Biodegradation 94, 182-91. http://dx.doi.or/10.1016/j.ibiod.2014.07.015.

Guerrero-Barajas, C., Ordaz-Cortés, A., García Solares, S.M., Garibay-Orijel, C., Bastida-González, F. and Zárate-Segura, P.B. (2015). Development of sulfidogenic sludge from marine sediments and trichloroethylene reduction in an upflow anaerobic sludge blanket reactor. Journal of Visualized Experiments 104, e52956.

Hao, T.W., Xiang, P., Mackey, H.R., Chi, K., Lu, H., Chui, H.K., van Loosdrecht, M.C.M. and Chen, G.H. (2014). A review of biological sulfate conversions in wastewater treatment. Water Research 65, 1-21.

He, L., Du, P., Chen, Y., Lu, H., Cheng, X., Chang, B. and Wang, Z. (2017). Advances in microbial fuel cells for wastewater treatment. Renewable and Sustainable Energy Reviews 71, 388-403.

Hu, J., Zeng, C., Liu, G., Lu, Y., Zhang, R. and Luo, H. (2019). Enhanced sulfate reduction accompanied with electrically-conductive pili production in graphene oxide modified biocathodes. Bioresource Technology 282, 425-432. https://doi.org/10.1016/j.biortech.2019.03.023

Janyasuthiwong, S., Rene, E. R., Esposito, G. and Lens, P. N. L. (2015). Effect of pH on the performance of sulfate and thiosulfate-fed sulfate reducing inverse fluidized bed reactors. Journal of Environmental Engineering, 1-11. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001004

Jong, T. and Parry, D. L. (2006). Microbial sulfate reduction under sequentially acidic conditions in an upflow anaerobic packed bed bioreactor. Water Research 40, 2561-2571. https://doi.org/10.1016/j.watres.2006.05.001

Kaksonen, A. H. and Puhakka, J. A. (2007). Sulfate reduction based bioprocesses for the treatment of acid mine drainage and the recovery of metals. Engineering in Life Sciences, 7, 541-564. https://doi.org/10.1002/elsc.200720216

Khater, D. Z., El-Khatib, K. M. and Hassan, H. M. (2017). Microbial diversity structure in acetate single chamber microbial fuel cell for electricity generation. Journal of Genetic Engineering and Biotechnology 15, 127-137. https://doi.org/10.1016/j.jgeb.2017.01.008

Koschorreck, M. (2008). Microbial sulphate reduction at a low pH. FEMS Microbiology Ecology 64, 329-342. https://doi.org/10.1111/j.1574-6941.2008.00482.x

Lee, D. J., Lee, C. Y. and Chang, J. S. (2012). Treatment and electricity harvesting from sulfate/sulfide-containing wastewaters using microbial fuel cell with enriched sulfate-reducing mixed culture. Journal of Hazardous Materials 243, 67-72. https://doi.org/10.1016/j.jhazmat.2012.09.071

Lee, D. J., Liu, X. and Weng, H. L. (2014). Sulfate and organic carbon removal by microbial fuel cell with sulfate-reducing bacteria and sulfide-oxidising bacteria anodic biofilm. Bioresource Technology 156, 14-19. https://doi.org/10.1016/j.biortech.2013.12.129

Lens, P., Vallero, M., Esposito, G. and Zandvoort, M. (2002). Perspectives of sulfate reducing bioreactors in environmental biotechnology. Reviews Environmental Science and Biotechnology 1, 311-325

Liang, F., Xiao, Y., and Zhao, F. (2013). Effect of pH on sulfate removal from wastewater using a bioelectrochemical system. Chemical Engineering Journal 218, 147-153. https://doi.org/10.1016/j.cej.2012.12.021

Logan, B. E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S. and Rabaey, K. (2006). Microbial fuel cells: methodology and technology. Environmental Science and Technology 40, 5181-5192. https://doi.org/10.1021/es0605016

Muralidharan, A., Babu, A., Nirmalraman, K. and Ramya, M. (2011). Impact of salt concentration on electricity production in microbial hydrogen-based salt bridge fuel cells. Indian Journal of Fundamental and Applied Life Sciences 1, 2231-6345.

Neculita, C.M., Zagury, G. J. and Bussière, B. (2007). Passive treatment of acid mine drainage in bioreactors using sulfate-reducing bacteria. Journal of Environment Quality 36, 1. https://doi.org/10.2134/jeq2006.0066

Peng, X., Tang, T., Zhu, X., Jia, G., Ding, Y., Chen, Y., Yang, Y. and Tang, W. (2017). Remediation of acid mine drainage using microbial fuel cell based on sludge anaerobic fermentation. Environmental Technology (United Kingdom) 38, 2400-2409. https://doi.org/10.1080/09593330.2016.1262462

Sánchez-Andrea, I., Sanz, J. L., Bijmans, M. F.M. and Stams, A. J. M. (2014). Sulfate reduction at low pH to remediate acid mine drainage. Journal of Hazardous Materials 269, 98-109. https://doi.org/10.1016/j.jhazmat.2013.12.032

Sangcharoen, A., Niyom, W. and Suwannasilp, B. B. (2015). A microbial fuel cell treating organic wastewater containing high sulfate under continuous operation: Performance and microbial community. Process Biochemistry 50, 1648-1655. https://doi.org/10.1016/j.procbio.2015.06.013

Stager, J., Zhang, X. and Logan, B.E. (2017). Addition of acetate improves stability of power generation using microbial fuel cells treating domestic waste water. Bioelectrochemistry 118, 154-160. http://dx.doi.org/10.1016/bioelechem.2017.08.002

Sevda, S. and Sreekrishnan, T. R. (2012). Effect of salt concentration and mediators in salt bridge microbial fuel cell for electricity generation from synthetic wastewater. Journal of Environmental Science and Health, Part A 47, 878-886. https://doi.org/10.1080/10934529.2012.665004

Sharma, M., Jain, P., Varanasi, J. L., Lal, B., Rodríguez, J., Lema, J. M. and Sharma, P. M. (2013). Enhanced performance of sulfate reducing bacteria based biocathode using stainless steel mesh on activated carbon fabric electrode. Bioresource Technology 150, 172-180. https://doi.org/10.1016/j.biortech.2013.09.069

Sivasankar, V., Mylsamy, P. and Omine, K. (2018). Microbial Fuel Cell Technology for Bioelectricity. Springer, Switzerland.

Trüper, H.G. and Schlegel, H.G. (1964). Sulphur metabolism in Thiorhodaceae I. Quantitative measurements on growing cells of Chromatium okenii. Antonie Van Leeuwenhoek 30, 225-238.

Van den Brand, T. P. H., Roest, K., Chen, G. H., Brdjanovic, D. and van Loosdrecht, M. C. M. (2015). Potential for beneficial application of sulfate reducing bacteria in sulfate containing domestic wastewater treatment. World Journal of Microbiology and Biotechnology 31, 1675-1681. https://doi.org/10.1007/s11274-015-1935-x

Weng, H. L. and Lee, D. J. (2015). Performance of sulfate reducing bacteria-microbial fuel cells: Reproducibility. Journal of the Taiwan Institute of Chemical Engineers 56, 148-153. https://doi.org/10.1016/j.jtice.2015.04.028

Zhao, F., Slade, R. C. T. and Varcoe, J. R. (2009). Techniques for the study and development of microbial fuel cells: An electrochemical perspective. Chemical Society Reviews 38, 1926-1939. https://doi.org/10.1039/b819866g
Published
2019-12-18
How to Cite
González-Paz, J. R., Ordaz, A., Jan-Roblero, J., Fernández-Linares, L. C., & Guerrero-Barajas, C. (2019). Sulfate reduction in a sludge gradually acclimated to acetate as the sole electron donor and its potential application as inoculum in a microbial fuel cell. Revista Mexicana De Ingeniería Química, 19(3), 1053-1069. https://doi.org/10.24275/rmiq/IA805
Section
Environmental Engineering

Most read articles by the same author(s)