Effects of agitation rates over metastable zone width (MSZW) of concentration for cane sugar crystallization

Keywords: MSZW, agitation rate, crystallization, cane sugar, concentration


The aim of this work is the experimental measurement of metastable zone width (MSZW) of concentration for sugar cane solutions by means of the polythermal method coupled with an image acquisition system, taking into account the effects of agitation rate and temperature, which represents a key novelty, since this is the first work that considers both variables experimentally. A split plot experimental design was followed with two factors, temperature with four levels (40, 50, 60 and 70 °C), and agitation rate with 3 levels (150, 250 and 350 rpm); the response variables were density (as a measure of concentration) and crystal size distribution. The results allow to demonstrate that agitation rate does not exhibit a statistical effect on the MSZW for the crystallization of cane sugar, attributing the formation of nuclei and their growth to effects by changes in the temperature. This contributes to better understanding of the phenomenological behavior occurring in sugar cane crystallization.


Aamir, E., Nagy, Z. K., Rielly, C. D. (2010). Evaluation of the effect of seed preparation method on the product crystal size distribution for batch cooling crystallization processes. Crystal Growth & Design. 1, 4728–4740.
Akrap, M., Kuzmanic, N., Kardum, P. J. (2010). Effect of mixing on the crystal size distribution of borax decahydrate in batch cooling crystallizer. Journal of Crystal Growth. 312, 3603-3608. https://doi.org/10.1016/j.jcrysgro.2010.09.023
Bezanson, J., Edelman, A., Karpinski, S., Shah, V. B. (2015) Julia: A fresh approach to numerical computing. arXiv:1411.1607v4
Binev, D., Seidel-Morgenstern, A., Lorenz, H. (2015). Study of crystal size distributions in a fluidized bed crystallizer. Chemical Engineering Science. 133, 116-124.
Bolaños, R. E., Sánchez, S. K. B., Urrea, G. G. R., Ricardez, S. L. A. (2014). Dynamic Modeling and Optimization of Batch Crystallization of Sugar Cane under Uncertainty. Industrial & Engineering Chemistry Research. 53, 13180-13194.
Bolaños, R. E. (2000). Control and optimization of operating conditions from cooling batch crystallizers. Ph. D. Thesis. I.T. de Celaya, México.
Bolaños, R. E., Xaca, X. O., Álvarez, R. J., López, Z. L. (2008). Effect analysis from dynamic regulation of vacuum pressure in an adiabatic batch crystallizer using data and image acquisition. Industrial & Engineering Chemistry Research. 47, 9426-9436.
Bolaños, R. E., Sánchez, S. K. B., López, Z. L., Ricárdez, S. L. (2018). A study on empirical and mechanistic approaches for modelling cane sugar crystallization. Revista Mexicana de Ingeniería Química. 17(2), 389-406.
Cheon, Y. H., Kim, K. J., Kim, S. H. (2005). A study on crystallization kinetics of pentaerythritol in a batch cooling crystallizer. Chemical Engineering Science. 60, 4791-4802. https://doi.org/10.1016/j.ces.2005.03.035
Chianese, A., Kramer, M. J. H. (2012). Industrial crystallization process monitoring and control. WILEY-VCH. https://doi.org/10.1002/9783527645206
Chianese, A., Karel, M., Mazzarotta, B. (1995). Nucleation kinetics of pentaerythritol. The Chemical Engineering Journal. 58, 209-214.
Córdova P. N. M. (2004). Determination of the seed conditions to maximize the growth of particles obtained by batch cooling crystallization. Master Thesis, Instituto Tecnológico de Orizaba. Orizaba, Veracruz, México.
Frawley, J. P., Mitchell, A. N., Ó’Ciardhá, T. C., Hutton, W. K. (2012). The effects of supersaturation, temperature, agitation and seed surface on the secondary nucleation of paracetamol in ethanol solutions. Chemical Engineering Science. 75, 183-197.
Fujiwara, M.; Nagy, Z. K.; Chew, J. W.; Braatz, R. D. (2005). First- principles and direct design approaches for the control of pharmaceutical crystallization. Journal Process Control. 15, 493−504. https://doi.org/10.1016/j.jprocont.2004.08.003
Hojjati, H., Sheikhzadeh, M., Rohani S. (2007). Control of supersaturation in a semibatch antisolvent crystallization process using a fuzzy logic controller. Industrial & Engineering Chemistry Research. 46, 1232-1240. https://doi.org/10.1021/ie060967x
Hu, Q., Rohani, S., Jutan, A. (2005). Modelling and optimization of seeded batch crystallizers. Computers & Chemical Engineering. 29, 911-918. https://doi.org/10.1016/j.compchemeng.2004.09.011
Kaćunić, A., Akrap, M., Kuzmanić, N. (2013). Effect of impeller type and position in a batch cooling crystallizer on the growth of borax decahydrate crystals. Chemical Engineering Research and Design. 91, 274-285. https://doi.org/10.1016/j.cherd.2012.07.010
Kadam, S. S., Kulkarni, S. A., Coloma Ribera, R., Stankiewicz, A. I., ter Horts, J. H., Kramer, H. J. M. (2012). A new view on the metastable zone width during cooling crystallization. Chemical Engineering Science. 72, 10-19. https://doi.org/10.1016/j.ces.2012.01.002
Kalbasenka, A., Huesman, A., Kramer, H. (2011). Modeling batch crystallization processes: Assumption verification and improvement of the parameter estimation quality through empirical experiment design. Chemical Engineering Science. 66, 4867-4877. https://doi.org/10.1016/j.ces.2011.06.049
Kalbasenka, A., Huesman, A., Kramer, H. (2004). Impeller frequency as a process actuator in suspension crystallization of inorganic salts from aqueous solutions. In: 11th International Workshop on Industrial Crystallization. 135-143.
Kim, Y. H., Lee, K., Koo, K. K., Shul, Y. G., Haam, S. (2002). Comparison study of mixing effect on batch cooling crystallization of 3-Nitro-1,2,4-triazol-5-one (NTO) using mechanical stirrer and ultrasound irradiation. Crystal Research & Technology. 37, 928–944.
Mesbah, A., Landlust, J., Huesman, A. E. M., Kramer, H. J. M., Jansen, P. J., Van den Hof, P. M. J. (2010). A model-based control framework for industrial batch crystallization processes. Chemical Engineering Research and Design. 88, 1223-1233.
Myronchuk, V., Yeshchenko, O., Samilyk, M. (2013). Sucrose cooling crystallization modelling. Journal of Faculty of Food Engineering. 12(2), 109-114.
Nagy, Z. K. (2009). Model based robust control approach for batch crystallization product design. Computers & Chemical Engineering. 33, 1685− 1691.
Nagy, Z., Aamir, E. (2012). Systematic design of supersaturation controlled crystallization processes for shaping the crystal size distribution using an analytical estimator. Chemical Engineering Science. 84, 656-670. https://doi.org/10.1016/j.ces.2012.08.048
Nagy, Z. K.; Fujiwara, M.; Braatz, R. D. (2008). Modelling and control of combined cooling and antisolvent crystallization processes. Journal of Process Control. 18, 856−864.
Ni, X., Liao, A. (2010). Effects of mixing, seeding, material of baffles and final temperature on solution crystallization of L-glutamic acid in an oscillatory baffled crystallizer. Chemical Engineering Journal. 156, 226-233.
Quintana, H. P., Bolaños, R. E., Miranda, C.B., Salcedo, E. L. (2004). Mathematical modeling and kinetic parameter estimation in batch crystallization. AIChE Journal. 50, 1407-1417. https://doi.org/10.1002/aic.10133
Quintana, H. P. A., Uribe, Martínez. B., Rico, R. V., Bolaños, R. E. (2008). Comparative analysis of power low type and diffusion-integration kinetic equations in batch cooling of sugar cane. Revista Mexicana de Ingeniería Química. 7(2), 171-182.
Sánchez, S. K. B. (2018). Optimization of operating conditions for the batch crystallization of sugar cane through the implementation of programmed trajectories in MSZW and image processing. PhD Thesis, I. T. de Orizaba, México.
Sánchez, S. K. B., & Bolaños, R. E. (2019, August 27). Kelvyn88/CSD.jl: RMIQ Paper Release (Version v1.1). Zenodo. http://doi.org/10.5281/zenodo.3379085
Sánchez, S. K. B., Bolaños, R. E., Urrea, G. G. R. (2017). Analysis of operating conditions for cane sugar batch crystallization based on MSZW coupled with mechanistic kinetic models. Revista Mexicana de Ingeniería Química. 16(3), 1031-1054.
Sander, A., Kardum, P. (2012). Pentaerythritol crystallization. Influence of the process conditions on the granulometric properties of crystals. Advanced Powder Technology. 23, 191-198. https://doi.org/10.1016/j.apt.2011.02.001
Sangwal, K. (2011). Recent developments in understanding of the metastable zone width if different solute-solvent systems. Journal of Crystal Growth. 318, 103-109.
Sarkar, D., Rohani, S., Jutan, A. (2006). Multi-objective optimization of seeded batch crystallization processes. Chemical Engineering Science. 61, 5282-5295.
Xiaobo, S., Xianghaim L., Yu, W., Guoji, L. (2009). Measurement and correlation of solubilities of adipic acid in different solvents. Chinese Journal of Chemical Engineering. 17, 473-477. https://doi.org/10.1016/S1004-9541(08)60233-5
Velázquez, C. O., Bolaños, R. E., Lopez, Z. L., Alvarez, R. J. (2010). Experimental evaluation of the concentration zone widths in cane sugar crystallization using data and image acquisition. In Proceedings of the World Congress on Engineering, London, U. K. http://www.iaeng.org/publication/WCE2010/WCE2010_pp709-714.pdf
Wong, S. Y., Bund, R. K., Connelly, R. K., Hartel, R. W. (2011). Determination of the dynamic metastable limit for α-lactose monohydrate crystallization. International Diary Journal. 21, 839-847. https://doi.org/10.1016/j.idairyj.2011.05.003
How to Cite
Sánchez-Sánchez, K., Bolaños-Reynoso, E., Méndez-Contreras, J., & Cerecero-Enriquez, R. (2019). Effects of agitation rates over metastable zone width (MSZW) of concentration for cane sugar crystallization. Revista Mexicana De Ingeniería Química, 19(2), 731-744. https://doi.org/10.24275/Proc809
Process engineering