Sequential synthesis of PID controllers based on LQR method

  • M. A. Hernández-Osorio
  • C. E. Ochoa-Velasco
  • M. A. García-Alvarado
  • A. Escobedo-Morales
  • I. I. Ruiz-López
Keywords: Lyapunov function, quadratic index, quadratic optimal control, robust control, state-space model

Abstract

The linear quadratic regulator (LQR) method is generalized to allow synthesis of PID controllers in MIMO processes. The proposed method is sequentially applied to produce proportional, integral and derivative actions. Three major usages are conceived for the proposed methodology: (i) <<de novo>> design of PID controllers, (ii) addition of derivative action to existing PI controllers and (iii) diagonalization of PID gain matrices. The two last procedures can be applied to controllers designed with different methodologies. The developed method was applied to the <<de novo>> design of a centralized PID controller for a three input-three output distillation column as well as the addition of derivative action to existing both centralized and multiloop PI controllers for a nonlinear CSTR. Proposed LQR method allowed the synthesis of centralized and multiloop PID controllers with better characteristics for set-point tracking, disturbance rejection, limited use of control signal and insensitivity to plant model uncertainty than those reported by other authors.

References

Besta, C.S. (2018). Multi-centralized control system design based on equivalent transfer functions using gain and phase-margin specifications for unstable TITO process. International Journal of Dynamics and Control 6, 817-826.

Burden, R.L., Faires, J.D. (2010). Numerical Analysis. Ninth edition. Cengage Learning. Canada. Chen, C.-L., Wang, T.-C., Hsu, S.-H. (2002). An LMI approach to H1 PI controller design. Journal of Chemical Engineering of Japan 35, 83-93.

Cruz-Rojas, A., Rumbo-Morales, J.Y., de la Cruz-Soto, J., Brizuela-Mendoza, J.A., Sorcia-Va´zquez, F.D.J.,Mart´ınez-Garc´ıa, M. (2019). Simulation and control of reactants supply and regulation of air temperature in a PEM fuel cells system with capacity of 50 kW. Revista Mexicana de Ingenier´ıa Qu´ımica 18, 349-360.

Das, S., Pan, I., Das, S.(2015). Multi-objective LQR with optimum weight selection to design FOPID controllers for delayed fractional order processes. ISA Transactions 58, 35-49.

Das, S., Pan, I., Halder, K., Das. S. Gupta, A. (2013). LQR based improved discrete PID controller design via optimum selection of weighting matrices using fractional order integral performance index. Applied Mathematical Modelling 37, 4253-68.

Este´vez-Sa´nchez, K.H., Sampieri-Croda, A., Garc´ıa-Alvarado, M.A., Ruiz-Lo´pez, I.I. (2017). Design of multiloop PI controllers based on quadratical optimal approach. ISA Transactions 70, 338-347.

Flores-Estrella, R.A., Estrada-Baltazar, A., Femat, R. (2016). A mathematical model and dynamic analysis of anaerobic digestion of soluble organic fraction of municipal solid waste towards control design. Revista Mexicana de Ingenier´ıa Qu´ımica 15, 243-258.

Garc´ıa-Alvarado, M.A., Ruiz-Lo´pez, I.I. (2010). A design method for robust and quadratic optimal MIMO linear controllers. Chemical Engineering Science 65, 3431-8.

He, J.-B., Wang, Q.-G., Lee, T.-H. (2000). PI/PID controller tuning via LQR approach. Chemical Engineering Science 55, 2429-2439.

Iruthayarajan, M.W., Baskar, S. (2010). Covariance matrix adaptation evolution strategy based design of centralized PID controller. Expert Systems with Applications 37, 5775-5781.

Koza´kova´, A., Vesely´, V. (2007). Improved tuning technique for robust decentralized PID controllers. IFAC Proceedings Volumes 40, 61-66.

Liu, Y., Gao, Y., Gao, Z., Wang, H., Li, P. (2010). Simple nonlinear predictive control strategy for chemical processes using sparse kernel learning with polynomial form. Industrial and Engineering Chemistry Research 49, 8209-8218.

Ma, D., Chen, J., Liu, A., Chen, J., Niculescu, S.-I. (2019). Explicit bounds for guaranteed stabilization by PID control of second-order unstable delay systems. Automatica 100, 407-411.

Maghade, D.K., Patre, B.M. (2012). Decentralized PI/PID controllers based on gain and phase margin specifications for TITO processes. ISA Transactions 51, 550-558.

Nandong, J., Zang, Z. (2014). Multi-loop design of multi-scale controllers for multivariable processes. Journal of Process Control 24, 600-612.

Ogunnaike, B.A., Lemaire, J.P., Morari, M., Ray, W.H. (1983). Advanced multivariable control of pilot-plant distillation column. AIChE Journal 29, 632-640.

Pathiran, A.R., Jagadeesan, P. (2018). Model based multivariable control scheme in a reset configuration for stable multivariable systems. The Canadian Journal of Chemical Engineering 96, 1317-1326.

Ram, V.D., Chidambaram, M. (2015). Simple method of designing centralized PI controllers for multivariable systems based on SSGM. ISA Transactions 56, 252-260.

Rodr´ıguez-Mariano, A., Reynoso-Meza, G., Pa´ramo-Caldero´n, D.E., Cha´vez-Conde, E., Garc´ıa-Alvarado, M.A., Carrillo-Ahumada, J. (2015). Comparative performance analysis of dierent linear controllers tuned for several Cholette’s bioreactor steady states using multi-criteria decision making techniques. Revista Mexicana de Ingenier´ıa Qu´ımica 14, 167-204.

Ruiz-Lo´pez, I.I., Rodr´ıguez-Jimenes, G.C., Garc´ıa-Alvarado, M.A. (2006). Robust MIMO PID controllers tuning based on complex/real ratio of the characteristic matrix eigenvalues. Chemical Engineering Science 61, 4332-4340.

Salazar-Pereyra, M., Lugo-Leyte, R., Bonilla-Blancas, A.E., Me´ndez-Lavielle, F., Lugo-Me´ndez, H.D. (2016). Theoretical analysis of thermal control of evaporator of refrigeration system with HFC-134a. Revista Mexicana de Ingenier´ıa Qu´ımica 15, 291-297.

Srivastava, S., Misra, A., Thakur, S.K., Pandit, V.S. (2016). An optimal PID controller via LQR for standard second order plus time delay systems. ISA Transactions 60, 244-253.

Vargas-Gonzales, S., Rodr´ıguez-Jimenes, G.C., Garc´ıa-Alvarado, M.A., Carrillo-Ahumada, J. (2013). Relation between first order dynamic parameters with PI control parameters in Nash equilibrium. In: Proceedings of the International Conference on Mechatronics, Electronics and Automotive Engineering,. ICMEAE, 123-6.

Vu, T.N.L., Lee, M. (2010). Independent design of multi-loop PI/PID controllers for interacting multivariable processes. Journal of Process Control 20, 922-933.

Xiong Q., Wen-Jian., C., Mao-Jun., H. (2007). Equivalent transfer function method for PI/PID controller design of MIMO processes. Journal of Process Control 17, 665-673.
Published
2019-11-14
How to Cite
Hernández-Osorio, M., Ochoa-Velasco, C., García-Alvarado, M., Escobedo-Morales, A., & Ruiz-López, I. (2019). Sequential synthesis of PID controllers based on LQR method. Revista Mexicana De Ingeniería Química, 19(2), 913-928. https://doi.org/10.24275/rmiq/Sim814
Section
Simulation and control

Most read articles by the same author(s)