Improving platinum dispersion on SBA-15 by titania addition.

  • G. Morales-Hernández
  • J. G. Pacheco-Sosa
  • J. Escobar-Aguilar
  • J. G. Torres-Torres
  • H. Pérez-Vidal
  • M. A. Lunagómez-Rocha
  • D. De la Cruz-Romero
  • P. del Angel-Vicente
Keywords: SBA-15, TiO2, platinum, composites, dispersion


Pt (1 and 1.5 wt%) was impregnated on SBA-15 and corresponding Ti-modified composites at different TiO2 contents (3, 5, 10 and 20 wt%). Materials were characterized by N2 physisorption, X-ray diffraction, Fourier transformed infrared spectroscopy, scanning electron microscopy and transmission electron microscopy. SBA-15 had surface area greater than 800 m²/g that progressively decreased with increasing TiO2 content in binary materials. Very different hydrolysis rate of Ti and Si alkoxides could provoke encapsulation of segregated titania domains in SBA-15 structure. Highly reactive titanium butoxide hydrolysis-condensation could take place before reactions corresponding to tetraethyl orthosilicate. Pt dispersion clearly augmented with Ti concentration in composites where numerous tiny noble metal particles were observed on titania domains surface. Also, corresponding pore size maxima shifted to lower diameters (as to that of non-impregnated supports) after platinum loading suggested metallic crystals inside pores of Ti-modified carriers. However, some large cubic platinum crystals were also observed suggesting  sintering (during calcining at 500 °C) of metallic particles weakly interacting with SBA-15 component. After materials annealing under air metallic platinum was evidenced (by XRD) pointing out to noble metal reduction during decomposition of organics from Ti and Si alkoxides used during carriers synthesis which presence was ascertained by FTIR.


Araujo, M.M. Silva, L.K.R. Sczancoski, J.C., Orlandi, M.O., Longo, E., Santos, A.G.D., Sá, J.L.S., Santos, R.S., Luz Jr. G.E. and Cavalcante, L.S. (2016). Anatase TiO2 nanocrystals anchored at inside of SBA-15 mesopores and their optical behavior. Applied Surface Science 389, 1137-1147.

Azimov, F., Markova, I., Stefanova, V. and Sharipov, Kh. (2012). Synthesis and characterization of SBA-15 and Ti-SBA-15 nanoporous materials for DME catalysts. Journal of the University of Chemical Technology and Metallurgy 47, 333-340.

Ballesteros-Plata, D., Infantes-Molina, A. and Rodríguez-Castellón, E. (2019). Study of bifunctionality of Pt/SBA-15 catalysts for HDO of Dibenzofuran, reaction: Addition of Mo or use of an acidic support. Applied Catalysis A-General 580, 93-101.

Boonstra, A.H. and Baken, E. (1990). Relation between the acidity and reactivity of a TEOS, etanol and water mixture. Journal of Non-Crystalline Solids 122, 171-182.

Calzada, L.A., Castellanos, R., García, L.A. and Klimova, T.E. (2019). TiO2, SnO2 and ZnO catalysts supported on mesoporous SBA-15 versus unsupported nanopowders in photocatalytic degradation of methylene blue. Microporous and Mesoporous Materials 285, 247-258.

Cui, X., Wang J., Zhang X., Wang, Q., Song, M. and Chai, J. (2019). Preparation of Nano-TiO2 by a Surfactant-Free Microemulsion-Hydrothermal Method and Its Photocatalytic Activity. Langmuir 35(28), 9255-9263. doi: 10.1021/acs.langmuir.9b01392.

Devi, P., Das, U. and Dalai, A.K. (2018). Production of glycerol carbonate using a novel Ti-SBA-15 catalyst. Chemical Engineering Journal 346, 477-488.

Escobar, J., De los Reyes, J.A. and Viveros, T. (2000). Influence of the Synthesis Additive on the Textural and Structural Characteristics of Sol-Gel Al2O3-TiO2. Industrial Engineering. Chemistry Research 39, 666-672.

Escobar, J., Barrera, M.C., Gutiérrez, A.W. and Terrazas, J.E. (2017). Benzothiophene hydrodesulfurization over NiMo/alumina catalysts modified by citric acid. Effect of addition stage of organic modifier. Fuel Processing Technology 156 (2017) 33-42.

Flodström, K. and Alfredsson, V. (2003). Influence of the block length of triblock copolymers on the formation of mesoporous silica. Microporous and Mesoporous Materials 59, 167-176.

Girleanu, M., Lopes Silva, S., Ihiawakrim, D., Chaumonnot, A., Bonduelle-Skrzypczak, A., Lefebvre, F., Dufaud, V., Gay, A-S., and Ersen, O. (2015). HAADF-STEM high-resolution study of nanometric MoS2 inside mesoporous SBA-15. Microporous and Mesoporous Materials 217, 190-195. DOI:10.1016/j.micromeso.2015.06.021.

Gómez-Orozco, S.Y., Huirache-Acuña, R., Pawelec, B., Fierro, J.L.G., Rivera-Muñoz, E.M., Lara Romero, J. and Alonso Nuñez, G. (2018). Characterizations and HDS performances of sulfided NiMoW catalysts supported on mesoporous titania-modified SBA-15. Catalysis Today 305, 152-161.

Griffith, G.W. (1984). Quantitation of Silanol in Silicones by FTIR Spectroscopy. Industrial Engineering Chemistry Product Research Development 23(4), 590-593.

Guo, X., Feng, Y., Ma, L., Gao, D., Jing, J., Yu, J., Sun, H., Gong, H. and Zhang, Y. (2017). Phosphoryl functionalized mesoporous silica for uranium adsorption. Applied Surface Science 402, 53-60.

Herricks, T., Chen, J. and Xia, Y. (2004). Polyol Synthesis of Platinum Nanoparticles: Control of Morphology with Sodium Nitrate. Nano Letters 4, 2367-2371.

Hung, N.P., Hoan, N.T.V. and Nghia, N.V. (2013). Synthesis and Characterization of Photocatalytic Material TiO2/SBA-15. Nanoscience and Nanotechnology 3(1), 19-25. DOI: 10.5923/j.nn.20130301.04.

Hungría, A.B., Calvino, J.J., Hernández-Garrido J.C. (2019). HAADF STEM Electron Tomography in Catalysis Research A. Topics in Catalysis, (in press).

Iglesias, J., Melero, J.A. and Sainz-Pardo, J. (2008). Direct synthesis of organically modified Ti-SBA-15 materials. Journal of Molecular Catalysis A-Chemical 291, 75-84.

Kim, M.Y., Jung, S.B., Kim, M.G., You, Y.S., Park, J.-H., Shin, C.-H. and Seo, G. (2009). Preparation of Highly Dispersive and Stable Platinum Catalysts Supported on Siliceous SBA-15 Mesoporous Material: Roles of Titania Layer
Incorporation and Hydrogen Peroxide Treatment. Catalysis Letters 129, 194-206. DOI: 10.1007/s10562-008-9790-0.

Kolev, H., Todorova, S., Naydenov, A., Ene, R., Ivanov, G., Parvulescu, V. and Kadinov, G. (2014). Catalytic Activity of Mesoporous SBA-15 modified with Pt and Ti in a Deep Methane, n-hexane and CO Oxidation. Athens Journal of Sciences 1, 9-20.

Kumar, M.S., Chen, D., Walmsley, J.C. and Holmen, A. (2008). Dehydrogenation of propane over Pt-SBA-15: Effect of Pt particle size. Catalysis communications 9, 747-750.

Leofanti, S.G., Padovan, M., Tozzola, G., Venturelli, B. (1998). Surface area and pore texture of catalysts. Catalysis Today 41, 207-210. doi:10.1016/S0920-5861(98)00050-9.

Li, B., Xu, Z., Chu, W., Luo, S. and Jing, F. (2017). Ordered mesoporous Sn‐SBA‐15 as support for Pt catalyst with enhanced performance in propane dehydrogenation. Chinese Journal of Catalysis 38, 726-735. DOI: 10.1016/S1872‐2067(17)62805‐5.

Liu, J., Ji, Q., Imai, T., Ariga, K., and Abeb, H. (2017). Sintering-Resistant Nanoparticles in Wide-Mouthed Compartments for Sustained Catalytic Performance. Scientific Reports 7, 41773, 1-8. DOI: 10.1038/srep41773.

Morterra, C. (1988). An infrared spectroscopic study of anatase properties. Part 6. -Surface hydration and strong Lewis acidity of pure and sulphate-doped preparations, Journal of the Chemical Society, Faraday Transactions 1 84, 1617-1637.

Palcheva, R., Kaluža, L., Dimitrov, L., Tyuliev, G., Avdeev, G., Jirátová, K. and Spojakina, A. (2016). NiMo catalysts supported on the Nb modified mesoporous SBA-15 and HMS: effect of thioglycolic acid addition on HDS, Applied Catalysis A-General 520, 24-34.

Pinto, T., Arquillière, P., Niccolai, G.P., Lefebvre, F. and Dufaud, V. (2015). The comparison of two classes of bifunctional SBA-15 supported platinum-heteropolyacid catalysts for the isomerization of n-hexane. New Journal of Chemistry 39, 5300-5308. DOI: 10.1039/c5nj00453e.

Qin, Y., Wang, Y., Wang, H., Gao, J. and Qu, Z. (2013). Effect of morphology and pore structure of SBA-15 on toluene dynamic adsorption/desorption performance. Procedia Environmental Sciences 18, 366-371.

Sahu, D.R., Hong, L.Y., Wang, S.C. and Huang, J.L. (2009).Synthesis, analysis and characterization of ordered mesoporous TiO2/SBA-15 matrix: Effect of calcination temperature. Microporous and Mesoporous Materials 117, 640-649.

Schwanke, A.J., Favero, C., Balzer, R., Bernardo-Gusmão, K. and Pergher, S.B.C. (2018). SBA-15 as a Support for Nickel-Based Catalysts for Polymerization Reactions. Journal of Brazilian Chemical Society 29(2), 328-333.

Sharma R.V., Baroi, Ch. and Dalai, A.K. (2014). Production of biodiesel from unrefined canola oil using mesoporous sulfated Ti-SBA-15 catalyst. Catalysis Today 237, 3-12.

Shiraishi, Y., Tanaka, H., Sakamoto, H., Ichikawa, S. and Hirai, T. (2017). Photoreductive synthesis of monodispersed Au nanoparticles with citric acid as reductant and surface stabilizing reagent. RSC Advances 7, 6187-6192.
DOI: 10.1039/C6RA27771C.

Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquérol, J. and Siemieniewska, T. (1985). Reporting physisorption data for gas/solid systems. Pure Applied Chemistry 57, 603-619.

Singh, S., Kumar, R., Setiabudi, H.D. and Nanda, S. (2018). Advanced synthesis strategies of mesoporous SBA-15 supported catalysts for catalytic reforming applications: A state-of-the-art review. Applied Catalysis A-General 559, 57-74.

Tomer, V.K., Jangra, S., Malik, R. and Duhan, S. (2015). Effect of in-situ loading of nano titania particles on structural ordering of mesoporous SBA-15 framework. Colloids and Surfaces A: Physicochemical and Engineering Aspects 466, 160-165.

Wang, Z., Zhang, F., Yang, Y., Xue, B., Cui, J. and Guan, N. (2007). Facile Postsynthesis of Visible-Light-Sensitive Titanium Dioxide/Mesoporous SBA-15. Chemistry of Materials 19, 3286-3293.

Wu, H. C., Chen, T.C., Lai N.C., Yang, C.M., Wu, Y.H., Chen, Y.C., Lee, J.F. and Chen, C.S. (2015). Synthesis of sub-nanosized Pt particles on mesoporous SBA-15 material and its application to the CO oxidation reaction. Nanoscale 7, 16848-16859.
DOI: 10.1039/C5NR04943A.

Yang, H.C., Lin, H.Y., Chien, Y.S., Chi-Sheng, J., Wu, J. C.-S. and Wu, H.H. (2009). Mesoporous TiO2/SBA-15, and Cu/TiO2/SBA-15 Composite Photocatalysts for Photoreduction of CO2 to Methanol. Catalysis Letters 131, 381-387. DOI 10.1007/s10562-009-0076-y.

Yin, Y., Yang, Z.F., Wen, Z.H., Yuan, A.H., Yuan, A.H., Liu, X.Q., Zhang, Z.Z. and Zhou, H. (2017). Modification of as Synthesized SBA-15 with Pt nanoparticles: Nanoconfinement Effects Give a Boost for Hydrogen Storage at Room Temperature. Scientific Reports 7(1), Article number: 4509, 1-10.

Yoldas, B.E. (1986). Hydrolysis of titanium alkoxide and effects of hydrolytic polycondensation parameters. Journal of Materials 21, 1087-1092. DOI:

Zhang, P., Wu, H., Fan, M., Sun, W., Jiang, P. and Dong, Y. (2019). Direct and postsynthesis of Ti-incorporated SBA-15 functionalized with sulfonic acid for efficient biodiesel production. Fuel 235, 426-432.

Zhu, J., Wang, T. and Xu, X. (2013). Pt nanoparticles supported on SBA-15: Synthesis, characterization and applications in heterogeneous catalysis. Applied Catalysis B- Environmental 130-131, 197-217.
How to Cite
Morales-Hernández, G., Pacheco-Sosa, J., Escobar-Aguilar, J., Torres-Torres, J., Pérez-Vidal, H., Lunagómez-Rocha, M., De la Cruz-Romero, D., & del Angel-Vicente, P. (2019). Improving platinum dispersion on SBA-15 by titania addition. Revista Mexicana De Ingeniería Química, 19(2), 997-1010.