Effect of the sulfonated catalyst in obtaining biodiesel when used in a diesel engine with controlled tests .

  • L. A. Sánchez-Olmos
  • M. Sánchez-Cárdenas
  • K. Sathish-Kumar
  • D. N. Tirado-González
  • V. A. Maldonado-Ruelas
  • R. A. Ortiz-Medina
Keywords: Biodiesel, Used Oil, Sulfonation, Catalyst, Atmospheric Emission.


The experimentally obtained biodiesel from used vegetable oil is used as an alternative energy source that has been synthesized from reactions directed by a solid acid catalyst. The solid acid catalyst was prepared by sulfonating rubber from rubber for used tires. For the realization and analysis of biodiesel tests in the internal combustion engine, an experimental design was applied in which the type of biofuel feed was used as the main control, namely pure commercial diesel (DIEP), a mixture of 50/50% biodiesel-diesel (MEBD) and pure biodiesel (BIOP). The performance values ​​and the emission and combustion characteristics of the fuel feed were investigated and compared under the same experimental conditions. During gas combustion, a considerable reduction of CO, unburned hydrocarbon and NOx emissions was achieved by using BIOP obtained in the laboratory compared to DIEP.


Abed, K. A., El Morsi, A. K., Sayed, M. M., Shaib, A. A. E., & Gad, M. S. (2018). Effect of waste cooking-oil biodiesel on performance and exhaust emissions of a diesel engine. Egyptian Journal of Petroleum, 27(4), 985–989. https://doi.org/10.1016/j.ejpe.2018.02.008

Ahmadi, P., Dincer, I., & Rosen, M. A. (2013). Development and assessment of an integrated biomass-based multi-generation energy system. Energy, 56, 155–166. https://doi.org/10.1016/j.energy.2013.04.024

Akar, M. A., Kekilli, E., Bas, O., Yildizhan, S., Serin, H., & Ozcanli, M. (2018). Hydrogen enriched waste oil biodiesel usage in compression ignition engine. International Journal of Hydrogen Energy, 43(38), 18046–18052. https://doi.org/10.1016/j.ijhydene.2018.02.045

Al-Nimr, M. A., Kiwan, S. M., & Talafha, S. (2016). Hybrid solar-wind water distillation system. Desalination, 395, 33–40. https://doi.org/10.1016/j.desal.2016.05.018

Alves, C. T., De Oliveira, A. S., Carneiro, S. A. V., Santos, R. C. D., Vieira De Melo, S. A. B., Andrade, H. M. C., Marques, F. C., & Torres, E. A. (2012). Transesterification of waste frying oils using ZnAl2O 4 as heterogeneous catalyst. Procedia Engineering, 42, 1928–1945. https://doi.org/10.1016/j.proeng.2012.07.589

Amani, H., Ahmad, Z., Asif, M., & Hameed, B. H. (2014). Transesterification of waste cooking palm oil by MnZr with supported alumina as a potential heterogeneous catalyst. Journal of Industrial and Engineering Chemistry, 20(6), 4437–4442. https://doi.org/10.1016/j.jiec.2014.02.012

Avinash, A., & Murugesan, A. (2018). Judicious Recycling of Biobased Adsorbents for Biodiesel Purification: A Critical Review. Environmental Progress and Sustainable Energy, 1–8. https://doi.org/10.1002/ep.13077

Ban-Weiss, G. A., Chen, J. Y., Buchholz, B. A., & Dibble, R. W. (2007). A numerical investigation into the anomalous slight NOx increase when burning biodiesel; A new (old) theory. Fuel Processing Technology, 88(7), 659–667. https://doi.org/10.1016/j.fuproc.2007.01.007

Bezerra, K. S., & Antoniosi Filho, N. R. (2014). Gas chromatographic analysis of free steroids in biodiesel. Fuel, 130, 149–153. https://doi.org/10.1016/j.fuel.2014.04.024

Brusamarello, C.Z., Di Domenico, M., Da Silva, C., de Castilhos F. (2019) A comparative study between multivariate calibration and artificial neural network in quantification of soybean biodiesel. Revista Mexicana de Ingeniería Química, 19(1), 123–132.

Chiatti, G., Chiavola, O., & Palmieri, F. (2018). Impact of waste cooking oil in biodiesel blends on particle size distributions from a city-car engine. Journal of the Energy Institute, 91(2), 262–269. https://doi.org/10.1016/j.joei.2016.11.009

Czekała, W., Bartnikowska, S., Dach, J., Janczak, D., Smurzyńska, A., Kozłowski, K., Bugała, A., Lewicki, A., Cieślik, M., Typańska, D., & Mazurkiewicz, J. (2018). The energy value and economic efficiency of solid biofuels produced from digestate and sawdust. Energy, 159, 1118–1122. https://doi.org/10.1016/j.energy.2018.06.090

Deng, Y., Zheng, W., Jiaqiang, E., Zhang, B., Zhao, X., Zuo, Q., Zhang, Z., & Han, D. (2017). Influence of geometric characteristics of a diesel particulate filter on its behavior in equilibrium state. Applied Thermal Engineering, 123, 61–73. https://doi.org/10.1016/j.applthermaleng.2017.05.071

Devi, A., Das, V. K., & Deka, D. (2017). Ginger extract as a nature based robust additive and its influence on the oxidation stability of biodiesel synthesized from non-edible oil. Fuel, 187, 306–314. https://doi.org/10.1016/j.fuel.2016.09.063

Dharmadhikari, H. M., Kumar, P. R., & Rao, S. S. (2012). Performance and Emissions of C.I. Engine Using Blends of Biodiesel and Diesel At Different Injection Pressures. International Journal of Applied Research in Mechanical Engineering, 2(2), 2231–5950. Retrieved from https://pdfs.semanticscholar.org/a97e/229a26d90ec39915ae9104ab35f62d57bf1b.pdf

Diya’Uddeen, B. H., Abdul Aziz, A. R., Daud, W. M. A. W., & Chakrabarti, M. H. (2012). Performance evaluation of biodiesel from used domestic waste oils: A review. Process Safety and Environmental Protection, 90(3), 164–179. https://doi.org/10.1016/j.psep.2012.02.005

dos Santos, V. H. J. M., Pestana, V. Z., de Freitas, J. S., & Rodrigues, L. F. (2018). A preliminary study on traceability of biodiesel mixtures based on the raw materials profiles from Brazilian regions and fourier transform infrared spectroscopy (FTIR). Vibrational Spectroscopy, 99(April), 113–123. https://doi.org/10.1016/j.vibspec.2018.09.005

Efe, Ş., Ceviz, M. A., & Temur, H. (2018). Comparative engine characteristics of biodiesels from hazelnut, corn, soybean, canola and sunflower oils on DI diesel engine. Renewable Energy, 119, 142–151. https://doi.org/10.1016/j.renene.2017.12.011

Emiroğlu, A. O., Keskin, A., & Şen, M. (2018). Experimental investigation of the effects of turkey rendering fat biodiesel on combustion, performance and exhaust emissions of a diesel engine. Fuel, 216(July 2017), 266–273. https://doi.org/10.1016/j.fuel.2017.12.026

Evangelista-Flores, A., Alcántar-González, F. S., Cruz-Goméz, M. J., Ramírez de Arellano Aburto, N., Cohen Barki, A., & Robledo-Pérez, J. M. (2014). Design of a continuous process of biodiesel production. Revista Mexicana de Ingeniera Qumica, 13(2), 483–491.

Farabi, M. S. A., Ibrahim, M. L., Rashid, U., & Taufiq-Yap, Y. H. (2019). Esterification of palm fatty acid distillate using sulfonated carbon-based catalyst derived from palm kernel shell and bamboo. Energy Conversion and Management, 181(September 2018), 562–570. https://doi.org/10.1016/j.enconman.2018.12.033

Faried, M., Samer, M., Abdelsalam, E., Yousef, R. S., Attia, Y. A., & Ali, A. S. (2017). Biodiesel production from microalgae: Processes, technologies and recent advancements. Renewable and Sustainable Energy Reviews. https://doi.org/10.1016/j.rser.2017.05.199

Gopinath, S., Kumar, P. S. M., Arafath, K. A. Y., Thiruvengadaravi, K. V., Sivanesan, S., & Baskaralingam, P. (2017). Efficient mesoporous SO42−/Zr-KIT-6 solid acid catalyst for green diesel production from esterification of oleic acid. Fuel, 203, 488–500. https://doi.org/10.1016/j.fuel.2017.04.090

Hoque, M. E., Singh, A., & Chuan, Y. L. (2011). Biodiesel from low cost feedstocks: The effects of process parameters on the biodiesel yield. Biomass and Bioenergy, 35(4), 1582–1587. https://doi.org/10.1016/j.biombioe.2010.12.024

Hosseini, S. H., Taghizadeh-Alisaraei, A., Ghobadian, B., & Abbaszadeh-Mayvan, A. (2017). Effect of added alumina as nano-catalyst to diesel-biodiesel blends on performance and emission characteristics of CI engine. Energy, 124, 543–552. https://doi.org/10.1016/j.energy.2017.02.109

Hou, K., Zhang, A., Gu, L., Liu, M., & Guo, X. (2012). Efficient synthesis and sulfonation of ordered mesoporous carbon materials. Journal of Colloid and Interface Science, 377(1), 18–26. https://doi.org/10.1016/j.jcis.2012.03.029
Jiaqiang, E., Zhang, Z., Chen, J., Pham, M. H., Zhao, X., Peng, Q., Zhang, B., & Yin, Z. (2018). Performance and emission evaluation of a marine diesel engine fueled by water biodiesel-diesel emulsion blends with a fuel additive of a cerium oxide nanoparticle. Energy Conversion and Management, 169(May), 194–205. https://doi.org/10.1016/j.enconman.2018.05.073

Lathiya, D. R., Bhatt, D. V., & Maheria, K. C. (2018). Synthesis of sulfonated carbon catalyst from waste orange peel for cost effective biodiesel production. Bioresource Technology Reports, 2(2017), 69–76. https://doi.org/10.1016/j.biteb.2018.04.007

Liu, H., Ma, X., Li, B., Chen, L., Wang, Z., & Wang, J. (2017). Combustion and emission characteristics of a direct injection diesel engine fueled with biodiesel and PODE/biodiesel fuel blends. Fuel, 209, 62–68. https://doi.org/10.1016/j.fuel.2017.07.066

Lu, A. H., Spliethoff, B., & Schüth, F. (2008). Aqueous synthesis of ordered mesoporous carbon via self-assembly catalyzed by amino acid. Chemistry of Materials, 20(16), 5314–5319. https://doi.org/10.1021/cm800362g

Lubis, L. I., Kanoglu, M., Dincer, I., & Rosen, M. A. (2011). Thermodynamic analysis of a hybrid geothermal heat pump system. Geothermics, 40(3), 233–238. https://doi.org/10.1016/j.geothermics.2011.06.004

Manigandan, S., Gunasekar, P., Devipriya, J., & Nithya, S. (2019). Emission and injection characteristics of corn biodiesel blends in diesel engine. Fuel, 235(October 2017), 723–735. https://doi.org/10.1016/j.fuel.2018.08.071

Medina-Valtierra, J., Sánchez-Olmos, L. A., Carrasco-Marin, F., & Sánchez-Cárdenas, M. (2017). Optimization models type box-behnken in the obtaining of biodiesel from waste frying oil using a large-acidity carbonaceous catalyst. International Journal of Chemical Reactor Engineering, 15(6), 1–15. https://doi.org/10.1515/ijcre-2017-0072

Mohamadzadeh Shirazi, H., Karimi-Sabet, J., & Ghotbi, C. (2017). Biodiesel production from Spirulina microalgae feedstock using direct transesterification near supercritical methanol condition. Bioresource Technology, 239, 378–386. https://doi.org/10.1016/j.biortech.2017.04.073

Mohan, B., Tay, K. L., Yang, W., & Chua, K. J. (2015). Development of a skeletal multi-component fuel reaction mechanism based on decoupling methodology. Energy Conversion and Management, 105, 1223–1238. https://doi.org/10.1016/j.enconman.2015.08.060

Monyem, A., Van Gerpen, J. H., & Canakci, M. (2001). The effect of timing and oxidation on emissions from biodiesel-fueled engines. Transactions of the American Society of Agricultural Engineers, 44(1), 35–42.

Mufrodi, Z., Budiman, A., & Purwono, S. (2018). Operation Conditions in Syntesize of Bioaditive from Glycerol as By-product Biodiesel: A Review. Energy Procedia, 145, 434–439. https://doi.org/10.1016/j.egypro.2018.04.071

Niu S, Ning Y, Lu C, et al (2018) Esterification of oleic acid to produce biodiesel catalyzed by sulfonated activated carbon from bamboo. Energy Convers Manag. doi: 10.1016/j.enconman.2018.02.055

Ogino, I., Suzuki, Y., & Mukai, S. R. (2018). Esterification of levulinic acid with ethanol catalyzed by sulfonated carbon catalysts: Promotional effects of additional functional groups. Catalysis Today, 314(September), 62–69. https://doi.org/10.1016/j.cattod.2017.10.001

Olikara, C., & Borman, G. L. (2010). A Computer Program for Calculating Properties of Equilibrium Combustion Products with Some Applications to I.C. Engines. SAE Technical Paper Series, 1. https://doi.org/10.4271/750468

Özener, O., Yüksek, L., Ergenç, A. T., & Özkan, M. (2014). Effects of soybean biodiesel on a DI diesel engine performance, emission and combustion characteristics. Fuel, 115(10), 875–883. https://doi.org/10.1016/j.fuel.2012.10.081

Patel, P. D., Lakdawala, A., Chourasia, S., & Patel, R. N. (2016). Bio fuels for compression ignition engine: A review on engine performance, emission and life cycle analysis. Renewable and Sustainable Energy Reviews, 65, 24–43. https://doi.org/10.1016/j.rser.2016.06.010

Peng, Q., E, J., Zhang, Z., Hu, W., & Zhao, X. (2018). Investigation on the effects of front-cavity on flame location and thermal performance of a cylindrical micro combustor. Applied Thermal Engineering, 130, 541–551. https://doi.org/10.1016/j.applthermaleng.2017.11.016

Pinzi, S., Rounce, P., Herreros, J. M., Tsolakis, A., & Pilar Dorado, M. (2013). The effect of biodiesel fatty acid composition on combustion and diesel engine exhaust emissions. Fuel, 104, 170–182. https://doi.org/10.1016/j.fuel.2012.08.056

Qi, D. H., Geng, L. M., Chen, H., Bian, Y. Z., Liu, J., & Ren, X. C. (2009). Combustion and performance evaluation of a diesel engine fueled with biodiesel produced from soybean crude oil. Renewable Energy, 34(12), 2706–2713. https://doi.org/10.1016/j.renene.2009.05.004

Ramesh, D. K., Dhananjaya Kumar, J. L., Hemanth Kumar, S. G., Namith, V., Basappa Jambagi, P., & Sharath, S. (2018). Study on effects of Alumina nanoparticles as additive with Poultry litter biodiesel on Performance, Combustion and Emission characteristic of Diesel engine. Materials Today: Proceedings, 5(1), 1114–1120. https://doi.org/10.1016/j.matpr.2017.11.190

Roskilly, A. P., Nanda, S. K., Wang, Y. D., & Chirkowski, J. (2008). The performance and the gaseous emissions of two small marine craft diesel engines fuelled with biodiesel. Applied Thermal Engineering, 28(8–9), 872–880. https://doi.org/10.1016/j.applthermaleng.2007.07.007

Sadhik Basha, J., & Anand, R. B. (2014). Performance, emission and combustion characteristics of a diesel engine using Carbon Nanotubes blended Jatropha Methyl Ester Emulsions. Alexandria Engineering Journal, 53(2), 259–273. https://doi.org/10.1016/j.aej.2014.04.001

Saleh, A., Qudeiri, J. A., & Al-Nimr, M. A. (2011). Performance investigation of a salt gradient solar pond coupled with desalination facility near the Dead Sea. Energy, 36(2), 922–931. https://doi.org/10.1016/j.energy.2010.12.018

Sánchez-Cárdenas, M., Medina-Valtierra, J., Kamaraj, S. K., Trejo-Zárraga, F., & Antonio Sánchez-Olmos, L. (2017). Physicochemical effect of Pt nanoparticles/Γ-Al2O3on the oleic acid hydrodeoxygenation to biofuel. Environmental Progress and Sustainable Energy. https://doi.org/10.1002/ep.12563

Sánchez-Cárdenas, M., Medina-Valtierra, J., Kamaraj, S.-K., Medina Ramírez, R., & Sánchez-Olmos, L. (2016). Effect of Size and Distribution of Ni Nanoparticles on γ-Al2O3 in Oleic Acid Hydrodeoxygenation to Produce n-Alkanes. Catalysts. https://doi.org/10.3390/catal6100156

Sánchez-Olmos, L. A., Medina-Valtierra, J., Sathish-Kumar, K., & Sánchez Cardenas, M. (2017). Sulfonated char from waste tire rubber used as strong acid catalyst for biodiesel production. Environmental Progress and Sustainable Energy. https://doi.org/10.1002/ep.12499

Sánchez-Roque Y., Pérez-Luna , Y., Moreira-Acosta J., Farrera-Vázquez N., Sebastian J., Berrones Hernández R. (2019). Optimization for the production of verrucodesmus verrucosus biomass through crops in autotrophic and mixotrophic conditions with potential for the production of biodiesel. Revista Mexicana de Ingeniería Química., 19(1), 133–146

Shehata, M. S., Elkotb, M. M., & Salem, H. (2014). Combustion characteristics for turbulent prevaporized premixed flame using commercial light diesel and kerosene fuels. Journal of Combustion, 2014. https://doi.org/10.1155/2014/363465

Sonthalia, A., & Kumar, N. (2019). Hydroprocessed vegetable oil as a fuel for transportation sector: A review. Journal of the Energy Institute, 92(1), 1–17. https://doi.org/10.1016/j.joei.2017.10.008

Sun, Y., Zhang, J., Sun, Z., & Zhang, L. (2018). Biodiesel production using calcium-based catalyst from venus shell: Modeling of startup production in an industrial reactor. Environmental Progress and Sustainable Energy, 1–9. https://doi.org/10.1002/ep.13053

Suresh, M., Prakash, R. H., & Prasad, B. D. (2015). Internal Combustion Engines – A Comprehensive Study, 4(11), 220–224.

Tang, X., & Niu, S. (2019). Preparation of carbon-based solid acid with large surface area to catalyze esterification for biodiesel production. Journal of Industrial and Engineering Chemistry, 69, 187–195. https://doi.org/10.1016/j.jiec.2018.09.016

Tovar-Martinez, E., Moreno-Torres, J. A., Cabrera-Salazar, J. V., Reyes-Reyes, M., Chazaro-Ruiz, L. F., & López-Sandoval, R. (2018). Synthesis of carbon nano-onions doped with nitrogen using spray pyrolisis. Carbon, 140, 171–181. https://doi.org/10.1016/j.carbon.2018.08.056

Varatharajan, K., & Cheralathan, M. (2012). Influence of fuel properties and composition on NO x emissions from biodiesel powered diesel engines: A review. Renewable and Sustainable Energy Reviews, 16(6), 3702–3710. https://doi.org/10.1016/j.rser.2012.03.056

Wang, A., Li, H., Pan, H., Zhang, H., Xu, F., Yu, Z., & Yang, S. (2018). Efficient and green production of biodiesel catalyzed by recyclable biomass-derived magnetic acids. Fuel Processing Technology, 181(October), 259–267. https://doi.org/10.1016/j.fuproc.2018.10.003

Westbrook, C. K., Sjöberg, M., & Cernansky, N. P. (2018). A new chemical kinetic method of determining RON and MON values for single component and multicomponent mixtures of engine fuels. Combustion and Flame, 195, 50–62. https://doi.org/10.1016/j.combustflame.2018.03.038

Wu, Q., Xie, X., Wang, Y., & Roskilly, T. (2017). Experimental investigations on diesel engine performance and emissions using biodiesel adding with carbon coated aluminum nanoparticles. Energy Procedia, 142, 3603–3608. https://doi.org/10.1016/j.egypro.2017.12.251

Zhang, Z., E, J., Deng, Y., Pham, M. H., Zuo, W., Peng, Q., & Yin, Z. (2018). Effects of fatty acid methyl esters proportion on combustion and emission characteristics of a biodiesel fueled marine diesel engine. Energy Conversion and Management, 159(December 2017), 244–253. https://doi.org/10.1016/j.enconman.2017.12.098

Zhao, C., Yang, L., Xing, S., Luo, W., Wang, Z., & Lv, P. (2018). Biodiesel production by a highly effective renewable catalyst from pyrolytic rice husk. Journal of Cleaner Production, 199, 772–780. https://doi.org/10.1016/j.jclepro.2018.07.242
How to Cite
Sánchez-Olmos, L., Sánchez-Cárdenas, M., Sathish-Kumar, K., Tirado-González, D., Maldonado-Ruelas, V., & Ortiz-Medina, R. (2019). Effect of the sulfonated catalyst in obtaining biodiesel when used in a diesel engine with controlled tests . Revista Mexicana De Ingeniería Química, 19(2), 969-982. https://doi.org/10.24275/rmiq/IE831
Energy Engineering