Assessment of intermediate and long chains agave fructan fermentation on the growth of intestinal bacteria cultured in a gastrointestinal tract simulator

  • R. García-Gamboa
  • M. S. Gradilla-Hernández.
  • R. I. Ortiz-Basurto
  • R. A. García-Reyes
  • M. González-Avila
Keywords: Prebiotic, Agave fructan, Polymerization degree, ex-vivo system, short- chain fatty acid

Abstract

The prebiotic activities of agave fructans are well documented; however, little is known about the effects of agave fructan fractions in particular. Some reports have demonstrated that different fructan chain lengths have different effects on the growth of intestinal microbiota bacterial communities. The aim of this study was to evaluate two agave fructan fractions on the growth of probiotic and pathogenic bacteria cultured in a gastrointestinal tract simulator. The growth was carried out by plate count using media selective for each different bacterial type. In addition, the metabolites generated via fructan metabolism were analyzed by ultra-high performance liquid chromatography. These results suggest that these fructan fractions possess prebiotic activities and have beneficial effects via inhibition of intestinal pathogen growth. These effects particularly depend on the length of the selected fructan fraction administration period. This knowledge is important for enhancing the selective use of prebiotics in functional foods.

References

Acosta-Domínguez, L., Alamilla-Beltrán, L., Calderón-Domínguez, G., Jiménez-Aparacio, A. R., Gutiérrez-López, G. F., & Azuara-Nieto, E. (2018). Determination of total and incipient solubilization point of fructans extracted of A. Tequilana weber var. Azul. Revista Mexicana de Ingeniería Química, 17(1), 379–388.

Arrizon, J., Hernandez-moedano, A., Toksoy-Oner, E., & Gonzalez-Avila, M. (2014). In vitro prebiotic activity of fructans with different fructosyl linkage. International Journal of Probiotics and Prebiotics, 9(3), 69–76.

Belzer, C., Chia, L. W., Aalvink, S., Chamlagain, B., Piironen, V., Knol, J., & de Vos, W. M. (2017). Microbial Metabolic Networks at the Mucus Layer Lead to Diet-Independent Butyrate and Vitamin B12 Production by Intestinal Symbionts. America Society for Microbiology, 8(5). https://doi.org/10.1128/mBio.00770-17

Falony, G., Lazidou, K., Verschaeren, A., Weckx, S., Maes, D., & De Vuyst, L. (2009). In Vitro Kinetic Analysis of Fermentation of Prebiotic Inulin-Type Fructans by Bifidobacterium Species Reveals Four Different Phenotypes . Applied and Environmental Microbiology , 75(2), 454–461. Retrieved from http://aem.asm.org/content/75/2/454.abstract

Fedewa, A., & Rao, S. S. C. (2013). Dietary Fructose Intolerance, Fructan Intolerance and FODMAPs. Current Gastroenterology Reports, 16(1), 370. https://doi.org/10.1007/s11894-013-0370-0

Fernandes, J., Eaton, P., Franco, I., Ramos, Ó. S., Sousa, S., Nascimento, H., … Pintado, M. E. (2012). Evaluation of chitoligosaccharides effect upon probiotic bacteria. International Journal of Biological Macromolecules, 50(1), 148–152. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2011.10.011

Fernandes, J., Su, W., Rahat-Rozenbloom, S., Wolever, T. . M. S., & Comelli, E. M. (2014). Adiposity, gut microbiota and faecal short chain fatty acids are linked in adult humans. Nutrition & Diabetes, 4(6), e121. https://doi.org/10.1038/nutd.2014.23

Gamboa, R. G., Basurto, R. I. O., Santoyo, M. C., Madrigal, J. B., Álvarez, B. E. R., & Ávila, M. G. (2018). In vitro evaluation of prebiotic activity, pathogen inhibition and enzymatic metabolism of intestinal bacteria in the presence of fructans extracted from agave: A comparison based on polymerization degree. LWT Food Science and Technology. https://doi.org/https://doi.org/10.1016/j.lwt.2018.02.051

Garcia-Curbelo, Y., Bocourt, R., Savon, L. L., Garcia-Vieyra, M. I., & Lopez, M. G. (2015). Prebiotic effect of Agave fourcroydes fructans: an animal model. Food & Function., 6(9), 3177–3182. https://doi.org/10.1039/C5FO00653H

Gomez, E., Tuohy, K. M., Gibson, G. R., Klinder, a., & Costabile, a. (2010). In vitro evaluation of the fermentation properties and potential prebiotic activity of Agave fructans. Journal of Applied Microbiology, 108(6), 2114–2121. https://doi.org/10.1111/j.1365-2672.2009.04617.x

González-Avila, M., Prado-Ramírez, Rogelio Flores-Montaño, J. L., Perez-Martinez, F. J., Gaspar, O. R., Alonso-Segura, D., Vol, P., … Leon, G. N. (2014). Evaluation of prebiotic potential of agave fructans from different regions of Colima and Zacatecas,México. International Journal of Probiotics and Prebiotics, 9(3), 93–100.

Hernández-Moedano, A., Moreno-Ramos, E. F., Herrera-Rodríguez, E. S., & González-Avila, M. (2014). Changes in Intestinal Microorganisms Influenced By Agave Fructans in A Digestive Tract Simulator. Journal of Chemical , Biological and Physical Sciences, 4(5), 19–25.

Hollie A. Grabitske MS, R. D., & Joanne L. Slavin PhD, R. D. (2009). Gastrointestinal Effects of Low-Digestible Carbohydrates. Critical Reviews in Food Science and Nutrition, 49(4), 327–360. https://doi.org/10.1080/10408390802067126

Krumbeck, J. A., Maldonado-Gomez, M. X., Ramer-Tait, A. E., & Hutkins, R. W. (2016). Prebiotics and synbiotics: dietary strategies for improving gut health. Current Opinion in Gastroenterology, 32(2). Retrieved from http://journals.lww.com/co-gastroenterology/Fulltext/2016/03000/Prebiotics_and_synbiotics___dietary_strategies_for.9.aspx

Lopez, M. G., Mancilla-Margalli, N. a., & Mendoza-Diaz, G. (2003). Molecular Structures of Fructans from Agave tequilana Weber var. azul. Journal of Agricultural and Food Chemistry, 51(27), 7835–7840. https://doi.org/10.1021/jf030383v

Louis, P., & Flint, H. J. (2017). Formation of propionate and butyrate by the human colonic microbiota. Environmental Microbiology, 19(1), 29–41. https://doi.org/10.1111/1462-2920.13589

Macfarlane, G. T., Macfarlane, S., & Gibson, G. R. (1998). Validation of a Three-Stage Compound Continuous Culture System for Investigating the Effect of Retention Time on the Ecology and Metabolism of Bacteria in the Human Colon. Microbial Ecology, 35(2), 180–187. https://doi.org/10.1007/s002489900072

Macfarlane, S., & Macfarlane, G. T. (2003). Regulation of short-chain fatty acid production. Proceedings of the Nutrition Society, 62(1), 67–72. https://doi.org/10.1079/PNS2002207

Márquez-Aguirre, A. L., Camacho-Ruiz, R. M., Arriaga-Alba, M., Padilla-Camberos, E., Kirchmayr, M. R., Blasco, J. L., & González-Avila, M. (2013). Effects of Agave tequilana fructans with different degree of polymerization profiles on the body weight, blood lipids and count of fecal Lactobacilli/Bifidobacteria in obese mice. Food & Function, 4(May 2016), 1237–44. https://doi.org/10.1039/c3fo60083a

Márquez-Aguirre, A. L., Camacho-Ruíz, R. M., Gutiérrez-Mercado, Y. K., Padilla-Camberos, E., González-Ávila, M., Gálvez-Gastélum, F. J., … Ortuño-Sahagún, D. (2016). Fructans from Agave tequilana with a Lower Degree of Polymerization Prevent Weight Gain, Hyperglycemia and Liver Steatosis in High-Fat Diet-Induced Obese Mice. Plant Foods for Human Nutrition, 71(4), 416–421. https://doi.org/10.1007/s11130-016-0578-x

Marzorati, M., Qin, B., Hildebrand, F., Klosterbuer, A., Roughead, Z., Roessle, C., … Possemiers, S. (2015). Addition of acacia gum to a FOS/inulin blend improves its fermentation profile in the Simulator of the Human Intestinal Microbial Ecosystem (SHIME®). Journal of Functional Foods, 16, 211–222. https://doi.org/10.1016/j.jff.2015.04.039

Moens, F., Weckx, S., & De Vuyst, L. (2016). Bifidobacterial inulin-type fructan degradation capacity determines cross-feeding interactions between bifidobacteria and Faecalibacterium prausnitzii. International Journal of Food Microbiology, 231(Supplement C), 76–85. https://doi.org/https://doi.org/10.1016/j.ijfoodmicro.2016.05.015

Molly, K., Vande Woestyne, M., & Verstraete, W. (1993). Development of a 5-step multi-chamber reactor as a simulation of the human intestinal microbial ecosystem. Applied Microbiology and Biotechnology, 39(2), 254–258. https://doi.org/10.1007/BF00228615

Moreno-Vilet, L., Garcia-Hernandez, M. H., Delgado-Portales, R. E., Corral-Fernandez, N. E., Cortez-Espinosa, N., Ruiz-Cabrera, M. a., & Portales-Perez, D. P. (2014). In vitro assessment of agave fructans (Agave salmiana) as prebiotics and immune system activators. International Journal of Biological Macromolecules, 63, 181–187. https://doi.org/10.1016/j.ijbiomac.2013.10.039

Morrison, D. J., & Preston, T. (2016). Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes, 7(3), 189–200. https://doi.org/10.1080/19490976.2015.1134082

Nagao-Kitamoto, H., Kitamoto, S., Kuffa, P., & Kamada, N. (2016). Pathogenic role of the gut microbiota in gastrointestinal diseases. Intestinal Research, 14(2), 127–138. Retrieved from http://synapse.koreamed.org/DOIx.php?id=10.5217%2Fir.2016.14.2.127

Payne, A. N., Chassard, C., & Lacroix, C. (2012). Gut microbial adaptation to dietary consumption of fructose, artificial sweeteners and sugar alcohols: implications for host–microbe interactions contributing to obesity. Obesity Reviews, 13(9), 799–809. https://doi.org/10.1111/j.1467-789X.2012.01009.x

Ramnani, P., Costabile, A., Bustillo, A. G. R., & Gibson, G. R. (2015). A randomised, double- blind, cross-over study investigating the prebiotic effect of agave fructans in healthy human subjects. Journal of Nutritional Science, 4. https://doi.org/10.1017/jns.2014.68

Rastall, R. A., & Gibson, G. R. (2015). Recent developments in prebiotics to selectively impact beneficial microbes and promote intestinal health. Current Opinion in Biotechnology, 32(Supplement C), 42–46. https://doi.org/https://doi.org/10.1016/j.copbio.2014.11.002

Ringel-Kulka, T., Benson, A. K., Carroll, I. M., Kim, J., Legge, R. M., & Ringel, Y. (2016). Molecular characterization of the intestinal microbiota in patients with and without abdominal bloating. American Journal of Physiology - Gastrointestinal and Liver Physiology, 310(6), G417--G426. https://doi.org/10.1152/ajpgi.00044.2015

Ríos-Covián, D., Ruas-Madiedo, P., Margolles, A., Gueimonde, M., de los Reyes-Gavilán, C. G., & Salazar, N. (2016). Intestinal Short Chain Fatty Acids and their Link with Diet and Human Health. Frontiers in Microbiology, 7, 185. https://doi.org/10.3389/fmicb.2016.00185

Rivière, A., Selak, M., Lantin, D., Leroy, F., & De Vuyst, L. (2016). Bifidobacteria and Butyrate-Producing Colon Bacteria: Importance and Strategies for Their Stimulation in the Human Gut. Frontiers in Microbiology, 7, 979. https://doi.org/10.3389/fmicb.2016.00979

Ruiz-Alvarez, B. E., Galvez-Alvarez, N. S., Hernandez-Moedano, A., Carmona-Vargas, G. A., & Gonzalez-Avila, M. (2014). A supplement enriched with agave fructans for childhood obesity evaluated in ex vivo system. Sustainable and Integral Exploitation of Agave, 104–107.

Santos, A., Mauro, M. S., & Díaz, D. M. (2006). Prebiotics and their long-term influence on the microbial populations of the mouse bowel. Food Microbiology, 23(5), 498–503. https://doi.org/https://doi.org/10.1016/j.fm.2005.07.004

Smith, P. M., Howitt, M. R., Panikov, N., Michaud, M., Gallini, C. A., Bohlooly-Y, M., … Garrett, W. S. (2013). The Microbial Metabolites, Short-Chain Fatty Acids, Regulate Colonic Treg Cell Homeostasis. Science, 341(6145), 569–573. https://doi.org/10.1126/science.1241165

Terpend, K., Possemiers, S., Daguet, D., & Marzorati, M. (2013). Arabinogalactan and fructo-oligosaccharides have a different fermentation profile in the Simulator of the Human Intestinal Microbial Ecosystem (SHIME). Environmental Microbiology Reports, 5(4), 595–603. https://doi.org/10.1111/1758-2229.12056

Wilson, B., & Whelan, K. (2017). Prebiotic inulin-type fructans and galacto-oligosaccharides: definition, specificity, function, and application in gastrointestinal disorders. Journal of Gastroenterology and Hepatology, 32, 64–68. https://doi.org/10.1111/jgh.13700

Zhang, Y.-J., Li, S., Gan, R.-Y., Zhou, T., Xu, D.-P., & Li, H.-B. (2015). Impacts of Gut Bacteria on Human Health and Diseases. International Journal of Molecular Sciences, 16(4), 7493–7519. https://doi.org/10.3390/ijms16047493
Published
2019-11-01
How to Cite
García-Gamboa, R., Gradilla-Hernández., M., Ortiz-Basurto, R., García-Reyes, R., & González-Avila, M. (2019). Assessment of intermediate and long chains agave fructan fermentation on the growth of intestinal bacteria cultured in a gastrointestinal tract simulator. Revista Mexicana De Ingeniería Química, 19(2), 827-838. https://doi.org/10.24275/rmiq/Bio842
Section
Biotechnology