α-Zein nanoparticles as delivery systems for hydrophobic compounds: Effect of assembly parameters

  • C. Sánchez-Juárez
  • D. Reyes-Duarte
  • M. Hernández-Guerrero
  • M. Morales-Ibarría
  • J. Campos-Terán
  • I. J. Arroyo-Maya
Keywords: α-zein, krill oil, astaxanthin, biopolymeric nanoparticles, hydrophobic interactions

Abstract

In this study, protein nanoparticles were assembled from a-zein using liquid antisolvent-precipitation methodology. The nanoparticles were loaded with krill oil, which is an important nutraceutical. The nanoparticles displayed different physicochemical characteristics depending on the assembly parameters chosen during their preparation. The fabrication process involved the use of biopolymer coatings (the protein b-lactoglobulin and the carbohydrate chitosan). Non-coated nanoparticles showed a particle size between 340-400 nm and surface charge of around -40 mV (pH 8.0). The protein copolymer b-lactoglobulin allowed the fabrication of smaller (d » 200 nm; z-potential » -60 mV) and more stable nanoparticles against pH changes (from 3.0 to 7.0). Chitosan was the best biopolymer coating for improving the antioxidant activity of the particles. The apparent pI for the different nanoparticles was modified after krill oil nanoencapsulation. These results support the idea that controlling the solvent system is a means to control physicochemical characteristics of a-zein nanoparticles.

References

Anarjan, Navideh, Mirhosseini, Hamed, Baharin, Badlishah Sham, & Tan, Chin Ping. (2010). Effect of processing conditions on physicochemical properties of astaxanthin nanodispersions. Food Chemistry, 123(2), 477-483. doi: https://doi.org/10.1016/j.foodchem.2010.05.036

Arroyo-Maya, Izlia J., & McClements, David Julian. (2015). Biopolymer nanoparticles as potential delivery systems for anthocyanins: Fabrication and properties. Food Research International, 69, 1-8. doi: https://doi.org/10.1016/j.foodres.2014.12.005

Castro-Gómez, María Pilar, Holgado, Francisca, Rodríguez-Alcalá, Luis Miguel, Montero, Olimpio, & Fontecha, Javier. (2015). Comprehensive Study of the Lipid Classes of Krill Oil by Fractionation and Identification of Triacylglycerols, Diacylglycerols, and Phospholipid Molecular Species by Using UPLC/QToF-MS. Food Analytical Methods, 8(10), 2568-2580. doi: 10.1007/s12161-015-0150-6

Chen, Huei-Mei, & Meyers, Samuel P. (1984). A rapid quantitative method for determination of astaxanthin pigment concentration in oil extracts. Journal of the American Oil Chemists Society, 61(6), 1045-1047. doi: 10.1007/BF02636215

Choubert, G., Dentella, E., Atgié, C., & Baccaunaud, M. (2005). Effect of light on colour stability of sliced smoked rainbow trout Oncorhynchus mykiss fed astaxanthin. Food Research International, 38(8), 949-952. doi: https://doi.org/10.1016/j.foodres.2004.07.012

Christophersen, A. G., Jun, H., Jorgensen, K., & Skibsted, L. H. (1991). Photobleaching of astaxanthin and canthaxanthin. Quantum-yields dependence of solvent, temperature, and wavelength of irradiation in relation to packaging and storage of carotenoid pigmented salmonoids. Z Lebensm Unters Forsch, 192(5), 433-439.

Diaz-Gomez, J. L., Ortiz-Martinez, M., Aguilar, O., Garcia-Lara, S., & Castorena-Torres, F. (2018). Antioxidant Activity of Zein Hydrolysates from Zea Species and Their Cytotoxic Effects in a Hepatic Cell Culture. Molecules, 23(2). doi: 10.3390/molecules23020312

Esen, A. (1990). An immunodominant site of gamma-zein1 is in the region of tandem hexapeptide repeats. J Protein Chem, 9(4), 453-460.

Freitas, Sergio, Merkle, Hans P., & Gander, Bruno. (2005). Microencapsulation by solvent extraction/evaporation: reviewing the state of the art of microsphere preparation process technology. Journal of Controlled Release, 102(2), 313-332. doi: https://doi.org/10.1016/j.jconrel.2004.10.015


Guerin, Martin, Huntley, Mark E., & Olaizola, Miguel. (2003). Haematococcus astaxanthin: applications for human health and nutrition. Trends in Biotechnology, 21(5), 210-216. doi: https://doi.org/10.1016/S0167-7799(03)00078-7

Joye, Iris J., Davidov-Pardo, Gabriel, & McClements, David Julian. (2015). Encapsulation of resveratrol in biopolymer particles produced using liquid antisolvent precipitation. Part 2: Stability and functionality. Food Hydrocolloids, 49, 127-134. doi: https://doi.org/10.1016/j.foodhyd.2015.02.038

Lakkis, J. M. (2007). Encapsulation and Controlled Release Technologies in Food Systems.: John Wiley and Sons.
Li, Kang-Kang, Yin, Shou-Wei, Yang, Xiao-Quan, Tang, Chuan-He, & Wei, Zi-Hao. (2012). Fabrication and Characterization of Novel Antimicrobial Films Derived from Thymol-Loaded Zein–Sodium Caseinate (SC) Nanoparticles. J Agric Food Chem, 60(46), 11592-11600. doi: 10.1021/jf302752v

Luo, Yangchao, Zhang, Boce, Whent, Monica, Yu, Liangli, & Wang, Qin. (2011). Preparation and characterization of zein/chitosan complex for encapsulation of α-tocopherol, and its in vitro controlled release study. Colloids and Surfaces B: Biointerfaces, 85(2), 145-152. doi: https://doi.org/10.1016/j.colsurfb.2011.02.020

Massrieh, Wael. (2008). Health benefits of omega-3 fatty acids from Neptune krill oil. Lipid Technology, 20(5), 108-111. doi: 10.1002/lite.200800022

Matalanis, Alison, Jones, Owen Griffith, & McClements, David Julian. (2011). Structured biopolymer-based delivery systems for encapsulation, protection, and release of lipophilic compounds. Food Hydrocolloids, 25(8), 1865-1880. doi: https://doi.org/10.1016/j.foodhyd.2011.04.014

Miller, Nicholas J., Sampson, Julia, Candeias, Luis P., Bramley, Peter M., & Rice-Evans, Catherine A. (1996). Antioxidant activities of carotenes and xanthophylls. FEBS Letters, 384(3), 240-242. doi: https://doi.org/10.1016/0014-5793(96)00323-7

Parris, N., Cooke, P. H., & Hicks, K. B. (2005). Encapsulation of essential oils in zein nanospherical particles. J Agric Food Chem, 53(12), 4788-4792. doi: 10.1021/jf040492p

Peña-Ramos, E. Aida, Xiong Youling, L., & Arteaga Guillermo, E. (2004). Fractionation and characterisation for antioxidant activity of hydrolysed whey protein. Journal of the Science of Food and Agriculture, 84(14), 1908-1918. doi: 10.1002/jsfa.1886

Re, Roberta, Pellegrini, Nicoletta, Proteggente, Anna, Pannala, Ananth, Yang, Min, & Rice-Evans, Catherine. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9), 1231-1237. doi: https://doi.org/10.1016/S0891-5849(98)00315-3

Reza, Arshady. (1990). Microspheres and microcapsules, a survey of manufacturing techniques Part II: Coacervation. Polymer Engineering & Science, 30(15), 905-914. doi: doi:10.1002/pen.760301505

Sánchez-Juarez, C., Reyes-Duarte, D., Campos-Terán, J., Hernpandez-Sánchez, H., Vera-Robles, I., Hernández-Arana, A., Arroyo-Maya, I. (2019). Study of the properties and colloidal stability for the technological application of zein-based nanospheres. Revista Mexicana de Ingeniería Química, 18(2), 715-728.

Shukla, Rishi, & Cheryan, Munir. (2001). Zein: the industrial protein from corn. Industrial Crops and Products, 13(3), 171-192. doi: https://doi.org/10.1016/S0926-6690(00)00064-9

Wijendran, Vasuki, Huang, Meng-Chuan, Diau, Guan-Yeu, Boehm, Günther, Nathanielsz, Peter W., & Brenna, J. Thomas. (2002). Efficacy of Dietary Arachidonic Acid Provided as Triglyceride or Phospholipid as Substrates for Brain Arachidonic Acid Accretion in Baboon Neonates. Pediatric Research, 51, 265. doi: 10.1203/00006450-200203000-00002
Published
2019-10-28
How to Cite
Sánchez-Juárez, C., Reyes-Duarte, D., Hernández-Guerrero, M., Morales-Ibarría, M., Campos-Terán, J., & Arroyo-Maya, I. (2019). α-Zein nanoparticles as delivery systems for hydrophobic compounds: Effect of assembly parameters. Revista Mexicana De Ingeniería Química, 19(2), 793-801. https://doi.org/10.24275/rmiq/Alim859
Section
Food Engineering

Most read articles by the same author(s)