An electroanalytical method for brewing vinegar authentic identification

  • L. Fu
  • H.Y. Zhang
  • Y.H. Zheng
  • H.W. Zhang
  • Q.H. Liu


An electrochemical fingerprint-based methodology is described here for vinegar authentic identification. The commercial three-electrode system can be directly inserted into vinegar for voltammetric profile recording without the addition of electrolyte. The free amino acids and aroma compounds produced from the fermentation process can be oxidized during the differential pulse voltammetric scan. The fingerprint pattern of vinegar varies between the different brand due to the different raw ingredients and fermentation process. The DPV profiles can be converted into 2D scatter patterns for identifying twelve different vinegar in this work. In addition, clustering analysis confirmed the feasibility of the proposed method for vinegar authentic identification. We believe the proposed methodology can be further extended for other food quality screening application.


Arbeloa, E.M., Luján, R.C., Ariel, P.R., Churio, M.S. (2012). Electrochemical characterization of the marine antioxidant gadusol. {it Natural Product Communications 7}, 1211.

Cao, L., Song, X., Song, Y., Bi, J., Cong, S., Yu, C., Tan, M. (2017). Fluorescent nanoparticles from mature vinegar: their properties and interaction with dopamine. {it Food & Function 8}, 4744-4751.

Castro Mejías, R., Natera Marín, R., de Valme García Moreno, M., García Barroso, C. (2002). Optimisation of headspace solid-phase microextraction for analysis of aromatic compounds in vinegar. {it Journal of Chromatography A 953}, 7-15.

Cebrián-Torrejón, G., Doménech-Carbó, A., Figadère, B., Poupon, E., Fournet, A. (2017). Phytoelectrochemical analysis of Zanthoxylum chiloperone: An electrochemical approach to phytochemical screening. {it Phytochemical Analysis 28}, 171-175.

Chaibun, T., La-o-vorakiat, C., O'Mullane, A.P., Lertanantawong, B., Surareungchai, W. (2018). Fingerprinting green curry: an electrochemical approach to food quality control. {it ACS Sensors 3}, 1149-1155.

Chen, X., Wu, K., Sun, Y., Song, X. (2013). Highly sensitive electrochemical sensor for sunset yellow based on the enhancement effect of alumina microfibers. {it Sensors and Actuators B Chemical 185}, 582-586.

DeFelippis, M.R., Murthy, C., Broitman, F., Weinraub, D., Faraggi, M., Klapper, M.H. (1991). Electrochemical properties of tyrosine phenoxy and tryptophan indolyl radicals in peptides and amino acid analogs. {it The Journal of Physical Chemistry 95}, 3416-3419.

Deng, P., Xu, Z., Zeng, R., Ding, C., 2015. Electrochemical behavior and voltammetric determination of vanillin based on an acetylene black paste electrode modified with graphene-polyvinylpyrrolidone composite film. {it Food Chemistry 180}, 156-163.

Devi, R., Yadav, Sandeep, Nehra, R., Yadav, Sujata, Pundir, C. (2013). Electrochemical biosensor based on gold coated iron nanoparticles/chitosan composite bound xanthine oxidase for detection of xanthine in fish meat. {it Journal of Food Engineering 115}, 207-214.

Doménech-Carbó, A., Cebrián-Torrejón, G., Lopes-Souto, A., Martins-de-Moraes, M., Jorge-Kato, M., Fechine-Tavares, J., Barbosa-Filho, J.M. (2015). Electrochemical ecology: VIMP monitoring of plant defense against external stressors. textit{RSC Advances 5}, 61006-61011.

Doménech-Carbó, A., Ibars, A.M., Prieto-Mossi, J., Estrelles, E., Doménech-Carbó, M.T., Ortiz-Miranda, A.S., Martini, M., Lee, Y. (2017). Access to phylogeny from voltammetric fingerprints of seeds: the Asparagus case.

textit{Electroanalysis 29}, 643-650.

Domínguez, I., Doménech-Carbó, A., (2015). Screening and authentication of tea varieties based on microextraction-assisted voltammetry of microparticles. textit{Sensors and Actuators B: Chemical 210}, 491-499.

Fu, L., Zheng, Y., Zhang, P., Zhang, Haoyang, Wu, M., Zhang, Huaiwei, Wang, A., Su, W., Chen, F., Yu, J., Cai, W., Lin, C.-T. (2019). An electrochemical method for plant species determination and classification based on fingerprinting petal tissue. {it Bioelectrochemistry 129}, 199-205.

Fu, L., Zheng, Y., Zhang, P., Zhang, Haoyang, Zhuang, W., Zhang, Huaiwei, Wang, A., Su, W., Yu, J., Lin, C.-T. (2018a). Enhanced electrochemical voltammetric fingerprints for plant taxonomic sensing. {it Biosensors and Bioelectronics 120}, 102-107.

Fu, L., Zheng, Y., Zhang, P., Zhu, J., Zhang, H., Zhang, L., Su, W. (2018b). Embedding leaf tissue in graphene ink to improve signals in electrochemistry-based chemotaxonomy. {it Electrochemistry Communications 92}, 39-42.

Gálvez, M.C., Barroso, C.G., Pérez-Bustamante, J.A. (1994). Analysis of polyphenolic compounds of different vinegar samples. {it Zeitschrift für Lebensmittel-Untersuchung und Forschung 199}, 29-31.

Junqueira, L., de Brito, A., Franco, M., de Assis, S. (2019). Partial characterization and immobilization of carboxymethylcellulase from aspergillus niger produced by solid-state fermentation. {it Revista Mexicana de Ingeniería Química 18}, 241-250.

Kutlán, D., Molnár-Perl, I. (2003). New aspects of the simultaneous analysis of amino acids and amines as their o-phthaldialdehyde derivatives by high-performance liquid chromatography: Analysis of wine, beer and vinegar. {it Journal of Chromatography A 987}, 311-322.

Liu, D., Zhu, Y., Beeftink, R., Ooijkaas, L., Rinzema, A., Chen, J., Tramper, J. (2004). Chinese vinegar and its solid-state fermentation process. {it Food Reviews International 20}, 407-424.

Liu, L., Song, J., Yu, P., Cui, B. (2006). A novel electrochemical sensing system for inosine and its application for inosine determination in pharmaceuticals and human serum. {it Electrochemistry Communications 8}, 1521-1526.

López-Cuenca, S., Aguilar-Martínez, J., Rabelero-Velasco, M., Hernández-Ibarra, F., López-Ureta, L., Pedroza-Toscano, M. (2019). Spheroidal zinc oxide nanoparticles synthesized by semicontinuous precipitation method at low temperatures. {it Revista Mexicana de Ingeniería Química 18}, 1179-1187.

Martini, M., Machado de Carvalho, L., Blasco-Blasco, A., Doménech-Carbó, A. (2015). Screening and authentication of herbal formulations based on microextraction-assisted voltammetry of microparticles. {it Analytical Methods 7}, 5740-5747.

Mateo, E.M., Gómez, J.V., Montoya, N., Mateo-Castro, R., Gimeno-Adelantado, J.V., Jiménez, M., Doménech-Carbó, A. (2018). Electrochemical identification of toxigenic fungal species using solid-state voltammetry strategies. {it Food Chemistry 267}, 91-100.

Natera Marín, R., Castro Mejías, R., de Valme García Moreno, M., García Rowe, F., García Barroso, C. (2002). Headspace solid-phase microextraction analysis of aroma compounds in vinegar: Validation study. {it Journal of Chromatography A 967}, 261-267.

Núñez-Gastélum, J.A., Rodríguez-Núñez, J., de la Rosa, L., Díaz-Sánchez, A., Alvarez-Parrilla, E., Martínez-Martínez, A., Villa-Lerma, G. (2019). Screening of the physical and structural properties of chitosan-polycaprolactone films added with Moringa oleifera leaf extract. {it Revista Mexicana de Ingeniería Química 18}, 99-105.

Ortiz-Miranda, A.S., König, P., Kahlert, H., Scholz, F., Osete-Cortina, L., Doménech-Carbó, M.T., Doménech-Carbó, A. (2016). Voltammetric analysis of Pinus needles with physiological, phylogenetic, and forensic applications. {it Analytical and Bioanalytical Chemistry 408}, 4943-4952.

Paéz-García, C., Valdés-Parada, F. (2019). An upscaling approach for the Betz-Joukowsky theory. {it Revista Mexicana de Ingeniería Química 18}, 681-699.

Pellegrini, G.E., Carpico, G., Sanctis, P.D., Coni, E. (2005). Advantages and limitations of a novel hybrid biosensor for detecting toxic compounds in food. {it International Journal of Environmental Analytical Chemistry 85}, 927-936.

Prakash, J., Redey, L., Vissers, D.R., Degruson, J. (2000). Effect of sodium iodide additive on the electrochemical performance of sodium/nickel chloride cells. {it Journal of Applied Electrochemistry 30}, 1229-1233.

Raj, M.A., John, S.A. (2013). Simultaneous determination of uric acid, xanthine, hypoxanthine and caffeine in human blood serum and urine samples using electrochemically reduced graphene oxide modified electrode. {it Analytica Chimica Acta 771}, 14-20.

Rouhani, S. (2009). Novel electrochemical sensor for sunset yellow based on a platinum wire-coated electrode. {it Analytical Letters 42}, 141-153.

Sajid, M., Nazal, M.K., Mansha, M., Alsharaa, A., Jillani, S.M.S., Basheer, C. (2016). Chemically modified electrodes for electrochemical detection of dopamine in the presence of uric acid and ascorbic acid: a review. {it TrAC Trends in Analytical Chemistry 76}, 15-29.

Scampicchio, M., Mannino, S., Zima, J., Wang, J. (2005). Chemometrics on microchips: towards the classification of wines. {it Electroanalysis 17}, 1215-1221.

Shah, A., Malik, M.S., Zahid, A., Iftikhar, F.J., Anwar, A., Akhter, M.S., Shah, M.R., Zia, M.A., Ashiq, M.N., Shah, A.H. (2018). Carbamazepine coated silver nanoparticles for the simultaneous electrochemical sensing of specific food toxins. {it Electrochimica Acta 274}, 131-142.

Song, J., Xu, L., Xing, R., Li, Q., Zhou, C., Liu, D., Song, H. (2014). Synthesis of Au/graphene oxide composites for selective and sensitive electrochemical detection of ascorbic acid. {it Scientific Reports 4}, 7515.

Tesfaye, W., Morales, M., Callejón, R., Cerezo, A.B., Gonzalez, A., García-Parrilla, M., Troncoso, A. (2010). Descriptive sensory analysis of wine vinegar: tasting procedure and reliability of new attributes. {it Journal of Sensory Studies 25}, 216-230.

Tesfaye, W., Morales, M.L., Benítez, B., García-Parrilla, M.C., Troncoso, A.M. (2004). Evolution of wine vinegar composition during accelerated aging with oak chips. {it Analytica Chimica Acta 513}, 239-245.

Thiam, A., Brillas, E., Garrido, J.A., Rodríguez, R.M., Sirés, I. (2016). Routes for the electrochemical degradation of the artificial food azo-colour Ponceau 4R by advanced oxidation processes. {it Applied Catalysis B Environmental 180}, 227-236.

Thomas, F., Jamin, E. (2009). 2H NMR and 13C-IRMS analyses of acetic acid from vinegar, 18O-IRMS analysis of water in vinegar: international collaborative study report. {it Analytica Chimica Acta 649}, 98-105.

Torres-Segundo, C., Vergara-Sánchez, J., Reyes-Romero, P., Gómez-Díaz, A., Rodríguez-Albarrán, M., Martínez-Valencia, H. (2019). Effect on discoloration by nonthermal plasma in dissolved textile dyes: acid black 194. {it Revista Mexicana de Ingeniería Química 18}, 939-947.

Vasjari, M., Merkoçi, A., Hart, J.P., Alegret, S. (2005). Amino acid determination using screen-printed electrochemical sensors. {it Microchimica Acta 150}, 233-238.

Wang, J., Yang, B., Zhong, J., Yan, B., Zhang, K., Zhai, C., Shiraishi, Y., Du, Y., Yang, P. (2017). Dopamine and uric acid electrochemical sensor based on a glassy carbon electrode modified with cubic Pd and reduced graphene oxide nanocomposite. {it Journal of Colloid and Interface Science 497}, 172-180.

Wang, Y., Tong, L. (2010). Electrochemical sensor for simultaneous determination of uric acid, xanthine and hypoxanthine based on poly (bromocresol purple) modified glassy carbon electrode. {it Sensors and Actuators B: Chemical 150}, 43-49.

Wu, C., Dong, S., Li, Q., Wu, K. (2012). Electrochemical sensor for toxic ractopamine and clenbuterol based on the enhancement effect of graphene oxide. {it Sensors and Actuators B Chemical 168}, 178-184.

How to Cite
Fu, L., Zhang, H., Zheng, Y., Zhang, H., & Liu, Q. (2019). An electroanalytical method for brewing vinegar authentic identification. Revista Mexicana De Ingeniería Química, 19(2), 803-812.
Food Engineering