Physico-mechanical, barrier and antimicrobial properties of linseed mucilague films incorporated with H. virginiana extract

  • M. Z. Treviño-Garza
  • S. A. Yañez-Echeverría
  • S. García
  • A. E. Mora-Zúñiga
  • K. Arévalo-Niño
Keywords: mucilage, Hamamelis virginiana, antimicrobial activity, antimicrobial films, physico-mechanical properties

Abstract

Increased interest in providing safe food with excellent quality and shelf-life has resulted in increased efforts toward developing new bio-based packaging materials. The objectives of this study were to develop and characterize films based on linseed mucilage (LM) at concentrations of 2.0%, 2.5%, and 3.0% and the further development of antimicrobial films (AFs) incorporating Hamamelis virginiana (Hv) extract. The films with the greatest LM concentration was selected as the best formulation based on its mechanical properties, water vapor permeability and moisture sensitivity. Moreover, the antimicrobial activities of Hv extract against foodborne pathogens were evaluated. Minimum inhibitory concentrations were 1.18 mg mL-1 for L. monocytogenes and 2.37 mg mL-1 for S. typhi, S. aureus, and E. coli. Finally, AFs were developed by incorporating Hv extract at 2.37 mg mL-1 into a base of 3.0% LM, increasing elongation at break, antioxidant activity to 80.56%, moisture sensitivity, and antimicrobial activity (increasing inhibition zones to 19.50 – 22.50 mm). It also decreased tensile strength, maximum force, and water vapor permeability. These results suggest that AFs based on LM with Hv extract have sufficient properties for a potential packaging material.

References

Aguirre, A., Borneo, R., & León A. E. (2013). Antimicrobial, mechanical and barrier properties of triticale protein films incorporated with oregano essential oil. Food Bioscience, 1, 2 – 9.

Alboofetileh, M., Rezaei, M., Hosseini H., & Abdollahi M. (2014). Antimicrobial activity of alginate/clay nanocomposite films enriched with essential oils against three common foodborne pathogens. Food Control, 36, 1–7.

Alegre, I., Abadias, M., Anguera, M., Usall, J., & Viñas I. (2010). Fate of Escherichia coli O157:H7, Salmonella and Listeria innocua on minimally-processed peaches under different storage conditions. Food Microbiology, 27, 862–68.

Avila-Sosa, R., Palou, E., Jiménez M. M. T., Nevárez-Moorillón, G. V., Navarro C. A. R., & López-Malo A. (2012). Antifungal activity by vapor contact of essential oils added to amaranth, chitosan, or starch edible films. International Journal of Food Microbiology, 153, 66–72.

ASTM. (1995). Standard test methods for water vapor transmission of material E96-95. Annual book of ASTM standards. Philadelphia, PA: American Society for Testing and Material.

ASTM. (1996). Standard test methods for tensile properties of thin plastic sheeting, method D882-91. Annual book of ASTM standards. Philadelphia, PA: American Society for Testing and Material.


Benavides, S., Villalobos-Carvajal, R., Reyes, J. E. (2012). Physical, mechanical and antibacterial properties of alginate film: Effect of the crosslinking degree and oregano essential oil concentration. Journal of Food Engineering, 110, 232–39.

Brantner, A., & Grein E. (1994). Antibacterial activity of plant extracts used externally in traditional medicine. Journal of Ethnopharmacology, 44, 35–40.

Capitani, M. I., Matus-Basto, A., Ruiz-Ruiz, J. C., Santiago-García J.L., Betancur-Ancona, D.A., Nolasco, S.M., Tomás, M.C., & Segura-Campos, M.R. (2016). Characterization of biodegradable films based on Salvia hispanica L. protein and mucilage. Food and Bioprocess Technology, 9, 1276–86.

Dick, M., Haas, C. T. M., Gomaa, A., Subirade, M., De Oliveira, R. A., & Hickmann, F. S. (2015). Edible film production from chia seed mucilage: effect of glycerolconcentration on its physicochemical and mechanical properties. Carbohydrate Polymers, 130, 198–205.

Espino-Díaz, M., Ornelas-Paz, J. J., Martínez-Téllez, M. A., Santillán, C., Barbosa-Cánovas, G. V., Zamudio-Flores, P. B., & Olivas G. I. (2010). Development and characterization of edible films based on mucilage of Opuntia ficus-indica (L.). Journal of Food Science, 75, 347–52.

European Medicines Agency, EMEA. (2009). Evaluation of Medicines for Human Use. Assessment report on Hamamelis virginiana L. cortex, Hamamelis virginiana L. folium, Hamamelis virginiana L. folium et cortex aut ramunculus destillatum. 1–47. London.

Fakhouri, M. F., Martelli, S. M., Caon, T., & Velasco, J. I. (2015). Edible films and coatings based on starch/gelatin: Film properties and effect of coatings on quality of refrigerated Red Crimson grapes. Postharvest Biology and Technology, 109, 57–64.

Falguera, V., Quintero, J. P., Jiménez, A., Muñoz, J. A., & Ibarz, A. (2011). Edible films and coatings: Structures, active functions and trends in their use. Trends of Food Science and Technology, 22, 292–303.

Fedeniuk, R. W., & Costas, G. B. (1994). Composition and physicochemical properties of linseed (Linum usitatissimum L.) mucilage. Journal of Agriculture and Food Chemistry, 42, 240–47.

Fekri, N., Khayami, M., Heidari, R., & Jamee, R. (2008). Chemical analysis of flaxseed, sweet brasil, dragon head, and quince seed mucilages. Journal of Biological Science, 3, 166–70.

Fernández-Pan, I., Royo, M., & Maté, J. I. (2012). Antimicrobial activity of whey protein isolate edible films with essential oils against food spoilers and foodborne pathogens. Journal of Food Science, 77(7), 383–90.

González, M., Torres, J.L., & Medina, I. (2010). impact of thermal processing on the activity of gallotannins and condensed tannins from Hamamelis virginiana used as functional ingredients in seafood. Journal of Agriculture and Food Chemistry, 58, 4274–4283.

Hopkins, E. J., Chang, C., Lam, R. S. H., Nickerson, & M. T. (2015). Effects of flaxseed oil concentration on the performance of a soy protein isolate-based emulsion-type film. Food Research International, 67, 418–25.

Iturriaga, L., Olabarrieta, I., & Martínez, M. I. (2012). Antimcrobial assays of natural extracts and their inhibitory effect against Listeria innocua and fish spoilage bacteria, after incorporation into biopolymer edible films. International Journal of Food Microbiology, 158, 58–64.

Jouki, M., Yazdi, F. T., Mortazavi, S. A., & Koocheki, A. (2014). Quince seed mucilage films incorporated with oregano essential oil: Physical, thermal, barrier, antioxidant and antibacterial properties. Food Hydrocolloids, 36, 9–19.

Kasote, D.M. (2013). Flaxseed phenolics as natural antioxidants. International Food Research Journal, 20, 27–34.
Kim, J., Marshall, M. R., & Wei, C. (1995). Antimicrobial activity of some essential oil components against five foodborne pathogens. Journal of Agriculture and Food Chemistry, 43: 2839–45.

Kolarević, S., Milovanović, D., Avdović, M., Oalđe, M., Kostić, J., Sunjog, K., Nikolić, B., Knežević-Vukčević, J., & Vuković-Gačić, B. (2016). Optimisation оf the microdilution method for detection of minimum inhibitory concentration values in selected bacteria. Botanica Serbica, 40(1), 29–36.

Li, X. Y., Wang, Y., & Li, D. (2009). Effects of flaxseed gum addition and drying conditions on creep-recovery properties and water vapour transmission rate of starch-based films. International Journal of Food Engineering, 5(4), article No.10.

López-Hernández, L.H., Calderón-Oliver, M., Soriano-Santos, J., Severiano-Pérez, P., Escalona-Buendía, H.B., Ponce-Alquicira, E. (2018). Development and antioxidant stability of edible films supplemented with a tamarind seed extract. Revista Mexicana de Ingeniería Química, 17(3), 975-987.

Mahdi, O. S., Rezaei, M., Hadi, R. S., & Hashem, H. S. M. (2010). Development and evaluation of a novel biodegradable film made from chitosan and cinnamon essential oil with low affinity toward water. Food Chemistry, 122, 161–66.

Matan, N. (2012). Antimicrobial activity of edible film incorporated with essential oils to preserve dried fish (Decapterus maruadsi). International Food Research Journal, 19(4), 1733–38.

Morsy, M. K., Khalaf, H. H., Sharoba, A. M., El-Tanahi, H. H., & Cutter, C. N. (2014). Incorporation of essential oils and nanoparticles in pullulan films to control foodborne pathogens on meat and poultry products. Journal of Food Science, 79(4), 675–84.

Naran, R., Chen, G., & Carpita, N. C. (2008). Novel Rhamnogalacturonan I and Arabinoxylan. Plant Physiology, 148, 132–41.

Ojagh, S. M., Rezaei, M., Razavi, S. H., & Hosseini, S. M. H. (2010). Development and evaluation of a novel biodegradable film made from chitosan and cinnamon essential oil with low affinity toward water. Food Chemistry, 122, 161–66.

Oms-Oliu, G., Rojas-Grau, M. A., Alandes, G. A., Varela, P., Soliva-Fortuny, R., Hernando, M. I., Perez, M. I., Fiszman, S., & Martin-Belloso, O. (2010). Recent approaches using chemical treatments to preserve quality of fresh-cut fruit: A review. Postharvest Biology and Technology, 57, 139–48.

Oussalah, M., Caillet, S., Salmiéri, S., Saucier, L., & Lacroix, M. (2004). Antimicrobial and antioxidant effects of milk protein-based film containing essential oils for the preservation of whole beef muscle. Journal of Agriculture and Food Chemistry, 52, 5598–5605.

Pazos, M., Iglesias J., Maestre, R., & Medina, I. (2010). Structure-activity relationships of polyphenols to prevent lipid oxidation in pelagic fish muscle. Journal of Agriculture and Food Chemistry, 58, 11067–11074.

Pereira, C., Niranjan, P., & Manikantan, R. (2014). Clinical isolates of Staphylococcus aureus (R.): biofilm characterisation and inhibitory assay using Hamamelis virginiana (L.). International Journal of Pharma and Bio Sciences, 5(2), 809–819.

Pires, C., Ramos, C., Teixeira, B., Batista, I., Nunes, M. L., & Marques, A. (2013). Hake proteins edible films incorporated with essential oils: Physical, mechanical, antioxidant and antibacterial properties. Food Hydrocolloids, 30, 224–231.

Rojas-Grau, M. A., Soliva-Fortuny, R., & Martín-Belloso, O. (2009). Edible coatings to incorporate active ingredients to fresh cut fruits: a review. Trends Food Sci Technol, 20, 438–447.

Ruíz-Navajas, Y., Viuda-Martos, M., Sendra, E., Perez-Alvarez, J. A., & Fernández-López, J. (2013). In vitro antibacterial and antioxidant properties of chitosan edible films incorporated with Thymus moroderi or Thymus piperella essential oils. Food Control, 30, 386–392.

Salamanca, L. L. E., Pérez, C. L. E., Díaz, N. G. C., & Barba, A. L. R. (2011). Linseed mucilage and chitosan composite films: preparation, physical, mechanical and microstructure properties. Proceedings of the 11th International Congress on Engineering and Food. Athens, Greece.

Sharma, D., Dhanjal, D. S., & Mittal, B. (2017). Development of edible biofilm containing cinnamon to control food-borne pathogen. Journal of Applied Pharmaceutical Science, 7(01), 160–64.

Seydim, A. C., & Sarikus, G. (2006). Antimicrobial activity of whey protein based edible films incorporated with oregano, rosemary and garlic essential oils. Food Research International, 39, 639–44.

Shojaee-Aliabadi, S., Hosseini, H., Mohammadifar, M. A., Mohammadi, A., Ghasemlou, M., Hosseini, S. M., & Khaksar, R. (2014). Characterization of к-carrageenan films incorporated plant essential oils with improved antimicrobial activity. Carbohydrate Polymers, 101, 582–91.

Sorrentino, A., Gorrasi, G., & Vittoria. V. (2007). Potential perspectives of bio-nanocomposites for food packaging applications. Trends of Food Science and Technology, 18, 84–95.

Tee, Y. B., Wong, J., Tan, M. C., & Talib, R. A. (2016). Development of edible film from flaxseed mucilage. BioResources, 11(4), 10286–95.

Teixeira, B., Marques, A., Pires, C., Ramos, C., Batista, I., Saraiva, J. A., & Nunes, M. L. (2014). Characterization of fish protein films incorporated with essential oils of clove, garlic and origanum: physical, antioxidant and antibacterial properties. LWT - Food Science and Technology, 59, 533–39.

Treviño-Garza, M. Z., García, S., Heredia, N., Alanís-Guzmán, M. G., & Arévalo-Niño K. (2017). Layer-by-layer edible coatings based on mucilages, pullulan and chitosan and its effect on quality and preservation of fresh-cut pineapple (Ananas comosus). Postharvest Biology and Technology, 128, 63–75.

Veena, D., Naga, M. E., Vijayabhaskar, G. R., & Sudheer, K. (2015). Quality of edible polymer films incorporated with plant essential oils. International Journal of New Technologies in Science and Engineering, 2(2), 43–47.

Wang, Y., Li, D., Wang, L. J., Yang, L., & Özkan, N. (2011). Dynamic mechanical properties of flaxseed gum based edible films. Carbohydrate Polymers, 86, 499–504.

World Health Organization, WHO. (2004). Folium et Cortex Hamamelidis. WHO Monographs on Selected Medicinal Plants, 2, 124–36.
Published
2019-12-16
How to Cite
Treviño-Garza, M., Yañez-Echeverría, S., García, S., Mora-Zúñiga, A., & Arévalo-Niño, K. (2019). Physico-mechanical, barrier and antimicrobial properties of linseed mucilague films incorporated with H. virginiana extract. Revista Mexicana De Ingeniería Química, 19(2), 983-996. https://doi.org/10.24275/rmiq/Bio872
Section
Biotechnology