Swirling fluidized bed plasma reactor for the preparation of supported nanoparticles

  • G. Soto
  • E. Pahuamba
  • F. Ramírez
  • J. Cruz-Reyes
  • M. del Valle
  • H. Tiznado
Keywords: silver nanoparticles, fluidized bed, swirling bed, plasma reactor, hydrodesulphurization.


A swirling fluidized bed reactor design for the preparation of supported nanoparticles is reported. It uses a DC plasma torch that decomposes and vaporizes salt precursors; the cationic part condenses as metal nanoparticles on a powder support. Any fluidizable granular material can be used as support, as long as it withstands the temperatures of the plasma torch. The torch is located at the center of the reactor axis and the powder is fluidized using a cyclonic action (swirl) to minimize the space where the grains could come into direct contact with the plasma zone. The reactor was tested for silver nanoparticles (AgNPs) supported on silica-alumina, using silver nitrate as precursor. The results show large grains decorated with nano-sized metal particles. Depending on the load of silver nitrate, the size of the nanoparticles can range from 3 to 50 nm, as measured using transmission electron microscopy. They are in a non-oxidized state, as revealed with x-ray photoelectron spectroscopy. The AgNPs/SiO2–Al2O3 composite was tested as a catalyst in the hydrodesulphurization of dibenzothiophene. This method can be scaled up to produce large quantities of supported metallic particles. Its inherent simplicity, high processing speed and the low operating cost are its main advantages.


Brabazon, D., Pellicer, E., Zivic, F., Sort, J., Baró, M. D., Grujovic, N., & Choy, K. L. (2017). Commercialization of nanotechnologies-A case study approach. Commercialization of Nanotechnologies-A Case Study Approach. Springer International Publishing. https://doi.org/10.1007/978-3-319-56979-6

Camacho-Bragado, G. A., Elechiguerra, J. L., Olivas, A., Fuentes, S., Galvan, D., & Yacaman, M. J. (2005). Structure and catalytic properties of nanostructured molybdenum sulfides. Journal of Catalysis, 234, 182–190. https://doi.org/10.1016/j.jcat.2005.06.009

Chyang, C.-S., & Yen-Chin, L. (2002). A study in the swirling fluidizing pattern. Journal of Chemical Engineering of Japan, 35(6), 503–512. https://doi.org/10.1252/jcej.35.503

Hansen. (2014). (12) United States Patent S371 (c)(1), (2), (4) Date. Retrieved from https://patentimages.storage.googleapis.com/85/03/c0/b73a966debb322/US8110155.pdf

Isoda, T., Nagao, S., Ma, X., Korai, Y., & Mochida, I. (1996). Hydrodesulfurization of Refractory Sulfur Species. 1. Selective Hydrodesulfurization of 4,6-Dimethyldibenzothiophene in the Major Presence of Naphthalene over CoMo/Al 2 O 3 and Ru/Al 2 O 3 Blend Catalysts. Energy & Fuels, 10(2), 482–486. https://doi.org/10.1021/ef950144c

Mortier, S. T. F. C., De Beer, T., Gernaey, K. V, Remon, J. P., Vervaet, C., & Nopens, I. (2011). Mechanistic modelling of fluidized bed drying processes of wet porous granules: a review. European Journal of Pharmaceutics and Biopharmaceutics : Official Journal of Arbeitsgemeinschaft Für Pharmazeutische Verfahrenstechnik e.V, 79(2), 205–225. https://doi.org/10.1016/j.ejpb.2011.05.013

Naz, M. Y., Shukrullah, S., Sulaiman, S. A., Khan, Y., Alkanhal, M. A. S., & Ghaffar, A. (2019). Particle image velocimetry analysis of a swirling bed operation by using a mesh-coupled annular air distributor. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41(9). https://doi.org/10.1007/s40430-019-1857-x

Petronella, F., Truppi, A., Dell’Edera, M., Agostiano, A., Curri, M. L., & Comparelli, R. (2019, June 1). Scalable synthesis of mesoporous TiO2 for environmental photocatalytic applications. Materials. MDPI AG. https://doi.org/10.3390/ma12111853

Sirisomboon, K., & Laowthong, P. (2019). Experimental investigation and prediction of heat transfer in a swirling fluidized-bed combustor. Applied Thermal Engineering, 718–727. https://doi.org/10.1016/j.applthermaleng.2018.10.097

Sobrino, C., Ellis, N., & de Vega, M. (2009). Distributor effects near the bottom region of turbulent fluidized beds. Powder Technology, 189(1), 25–33. https://doi.org/10.1016/J.POWTEC.2008.05.012

Soto, Gerardo; Tiznado, Hugo; Pahuamba, E. (2019). FTIR spectra of CO adsorbed on silica-alumina supported silver nanoparticles. Mendeley Data, 2. https://doi.org/10.17632/YJCSKHF6HM.2

Soto, G. (2019). Mendeley Data. https://doi.org/http://dx.doi.org/10.17632/zf9mjpxkvy.1

Soto, G., Tiznado, H., Contreras, O., Pérez-Tijerina, E., Cruz-Reyes, J., Del Valle, M., & Portillo, A. (2011). Preparation of a Ag/SiO2 nanocomposite using a fluidized bed microwave plasma reactor, and its hydrodesulphurization and Escherichia coli bactericidal activities. Powder Technology, 213(1), 55–62. https://doi.org/10.1016/j.powtec.2011.07.005

Su, S. S., & Chang, I. (2017). Review of production routes of nanomaterials. In Commercialization of Nanotechnologies-A Case Study Approach (pp. 15–29). Springer International Publishing. https://doi.org/10.1007/978-3-319-56979-6_2

Tawfik, M. H. M., Refaat Diab, M., & Mohmed Abdelmotalib, H. (2019). An experimental investigation of wall-bed heat transfer and flow characteristics in a swirling fluidized bed reactor. Applied Thermal Engineering, 501–507. https://doi.org/10.1016/j.applthermaleng.2019.04.022

Wang, P.-J., Tzeng, C.-C., & Liu, Y. (2010). Thermal Temperature Measurements of Plasma Torch by Alexandrite Effect Spectropyrometer. Advances in Optical Technologies, 2010, 1–7. https://doi.org/10.1155/2010/656421

Yudin, A. S. M., Anuar, S., & Oumer, A. N. (2016). Improvement on particulate mixing through inclined slotted swirling distributor in a fluidized bed: An experimental study. Advanced Powder Technology, 27(5), 2102–2111. https://doi.org/10.1016/J.APT.2016.07.023
How to Cite
Soto, G., Pahuamba, E., Ramírez, F., Cruz-Reyes, J., del Valle, M., & Tiznado, H. (2019). Swirling fluidized bed plasma reactor for the preparation of supported nanoparticles. Revista Mexicana De Ingeniería Química, 19(2), 867-875. https://doi.org/10.24275/rmiq/Mat886