Chitosan films modified with glow discharge plasma in aqueous solution of pyrrole and its evaluation in the removal of red dye no. 2

  • J. N. Balderas-Gutiérrez
  • C. Hernández-Tenorio
  • R. E. Zavala-Arce
  • J. H. Pacheco-Sánchez
  • B. García-Gaitán
  • J. Illescas
Keywords: thin film chitosan-glycerol-polypyrrole, azo dyes, adsorption, glow discharge plasma

Abstract

In this work, the elasticity, morphology and chemical structure of chitosan-glycerol-EDGE films treated with glow discharge plasma (GDP), in an aqueous pyrrole solution for the removal of red dye No. 2, were studied. The treatment of the films with plasma was accomplished supplying 1.57 kV voltage with a current of 0.74 A, while the working frequency was 5.54 kHz. The exposure times of the films to the plasma were 20, 40, and 60 min. Results showed that the stress-strain mechanical properties for an untreated film was 2.6 N with an elongation of 17 mm, while for the treated film was 66 N with an elongation of 6 mm; thus, improving its mechanical properties. The adsorption capacity of films, treated during 40 min at pH close to neutral using a mass of 15 mg, was qe = 757 mg/g. The morphology of the film before its treatment showed a smooth surface; while after treatment, some pores were observed, probably produced by the impact of pyrrole ions onto the surface of the film. The FTIR analysis allowed to identify the functional groups before and after films treatment; it showed a reduction of -OH groups that belongs to chitosan, and the presence of N-H, C-N, and C=C groups, which corresponds to the aromatic ring of the polypyrrole molecule.

References

Aksu, Z., Tatli, A. I., & Tunç, Ö. (2008). A comparative adsorption/biosorption study of Acid Blue 161: Effect of temperature on equilibrium and kinetic parameters. Chemical Engineering Journal, 142, 23–39.

Apul, O. G., & Karanfil, T. (2015). Adsorption of synthetic organic contaminants by carbon nanotubes: A critical review. Water Research, 68, 34–55.

Arango Ruíz, Á., & Garcés Giraldo, L. (2009). Remoción del colorante azoico amaranto de soluciones acuosas mediante electrocoagulación. Revista Lasallista de Investigación, 6, 31–38.

Bautista, S. (2018). Physical Properties of Chitosan Films with Lemon Essential Oil added and Their Impact on the Shelf Life of Tomatoes (Lycopersiconesculentum L). Revista Mexicana de Ingeniería Química, 17, 1–11.

Casey, L. S., & Wilson, L. D. (2015). Investigation of Chitosan-PVA Composite Films and Their Adsorption Properties. Journal of Geoscience and Environment Protection, 03, 78–84.

Chen, A. H., & Chen, S. M. (2009). Biosorption of azo dyes from aqueous solution by glutaraldehyde-crosslinked chitosans. Journal of Hazardous Materials, 172, 1111–1121.

Chiou, M. S., & Chuang, G. S. (2006). Competitive adsorption of dye metanil yellow and RB15 in acid solutions on chemically cross-linked chitosan beads. Chemosphere, 62, 731–740. 8

Coates, J., Ed, R. A. M.,and Coates, J. (2000). Interpretation of Infrared Spectra, A Practical Approach Interpretation of Infrared Spectra, A Practical Approach. 10815–10837.

Crini, G., & Badot, P. M. (2008). Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature. Progress in Polymer Science (Oxford), 33, 399–447.

Dotto, G. L., & Pinto, L. A. A. (2011). Adsorption of food dyes onto chitosan: Optimization process and kinetic. Carbohydrate Polymers, 84, 231–238.

Dotto, G. L., Buriol, C., & Pinto, L. A. A. (2014). Diffusional mass transfer model for the adsorption of food dyes on chitosan films. Chemical Engineering Research and Design, 92, 2324–2332.

Dotto, G. L., Moura, J. M., Cadaval, T. R. S., & Pinto, L. A. A. (2013). Application of chitosan films for the removal of food dyes from aqueous solutions by adsorption. Chemical Engineering Journal, 214, 8–16.

Dotto, G. L., Pinto, L. A. A., Hachicha, M. A., & Knani, S. (2015). New physicochemical interpretations for the adsorption of food dyes on chitosan films using statistical physics treatment. Food Chemistry, 171, 1–7.

Dotto, G. L., Santos, J. M. N., Tanabe, E. H., Bertuol, D. A., Foletto, E. L., Lima, E. C., & Pavan, F. A. (2017).
Chitosan/polyamide nanofibers prepared by Forcespinning ® technology: A new adsorbent to remove anionic dyes from aqueous solutions. Journal of Cleaner Production, 144, 120–129.

Epps, H. H. (2003). Basic principles of textile coloration. Color Research & Application, 28, 230–231.

Esquerdo, V. M., Cadaval, T. R. S., Dotto, G. L., & Pinto, L. A. A. (2014). Chitosan scaffold as an alternative adsorbent for the removal of hazardous food dyes from aqueous solutions. Journal of Colloid and Interface Science, 424, 7–15.

Feng, T., Xiong, S., & Zhang, F. (2015). Application of cross-linked porous chitosan films for Congo red adsorption from aqueous solution. Desalination and Water Treatment, 53, 1970–1976.

Gerente, C., Lee, V. K. C., Le Cloirec, P., & McKay, G. (2007). Application of chitosan for the removal of metals from wastewaters by adsorption - Mechanisms and models review. Critical Reviews in Environmental Science and Technology, 37, 41–127.

Goncalves, J. O., Santos, J. P., Rios, E. C., Crispim, M. M., Dotto, G. L., & Pinto, L. A. A. (2017). Development of chitosan based hybrid hydrogels for dyes removal from aqueous binary system. Journal of Molecular Liquids, 225, 265–270.

González-Torres, M., Olayo, M. G., Cruz, G. J., Gómez, L. M., Sánchez-mendieta, V., & González-salgado, F. (2014). XPS Study of the Chemical Structure of Plasma Biocopolymers of Pyrrole and Ethylene Glycol. Advances in Chemistry, 2014, 1–8.

Guibal, E., Touraud, E., & Roussy, J. (2005). Chitosan interactions with metal ions and dyes: Dissolved-state vs. solid-state application. World Journal of Microbiology and Biotechnology, 21, 913–920.

Guibal, Eric, McCarrick, P., & Tobin, J. M. (2003). Comparison of the sorption of anionic dyes on activated carbon and chitosan derivatives from dilute solutions. Separation Science and Technology, 38, 3049–3073.

Hadi, A. G. (2011). Removal of Cationic Dye from Aqueous Solutions Using Chitosan. Indian Journal of Applied Research, 4, 4–6.

Horrocks, A. R. (1996). Recycling textile and plastic waste. In Recycling textile and plastic waste.
Huang, R., Liu, Q., Huo, J., & Yang, B. (2017). Adsorption of methyl orange onto protonated cross-linked chitosan. Arabian Journal of Chemistry, 10, 24–32.

ISO, 527-5. (1997). Plastics — Determination of tensile properties - Part 5: Test conditions for unidirectional fibre-reinforced plastic composites. International Organisation for ISOization (ISO), Geneva, Switzerland, 1, 9.

Jawad, A. H., Azharul Islam, M., & Hameed, B. H. (2017). Cross-linked chitosan thin film coated onto glass plate as an effective adsorbent for adsorption of reactive orange 16. International Journal of Biological Macromolecules, 95, 743–749.

Kyzas, G. Z., Lazaridis, N. K., & Kostoglou, M. (2014). Adsorption/desorption of a dye by a chitosan derivative: Experiments and phenomenological modeling. Chemical Engineering Journal, 248, 327–336.

Malaysia. and Standard. (2012). Malaysian Standard. Chrysanth. Stand. 2001, 1–3.

Method, T. and Note, T. (2009). Test Method Tech Note Plastics ASTM D638 Tensile Properties of Plastics. 3–4.

No, H. K., & Meyers, S. P. (1995). Preparation and characterization of chitin and chitosan - A review. Journal of Aquatic Food Product Technology, 4, 27–52.

Núñez-Gastélum, J.A., Rodríguez-Núñez, J.R., de la Rosa, L.A., Díaz-Sánchez, A.G., Alvarez-Parrilla, E., Martínez-Martínez, A., Villa-Lerma, G. (2019). Screening of the Physical and Structural Properties of Chitosan-Polycaprolactone Films added with Moringa Oleifera Leaf Extract. Revista Mexicana de Ingeniería Química, 18, 99-106.

Pérez-Escobedo, A., Díaz-Flores, P. E., Rangel-Méndez, J. R., Cerino-Cordova, F. J., Ovando-Medina, V. M., and Alcalá-Jáuregui, J. A. (2010). Fluoride absorption capacity of composites based on chitosan-zeolite-algae. Revista Mexicana De Ingeniería Química, 15, 261–283.

Ravi Kumar, M. N. (2000). A review of chitin and chitosan applications. Reactive and Functional Polymers, 46, 1–27.

Rêgo, T. V., Cadaval, T. R. S., Dotto, G. L., & Pinto, L. A. A. (2013). Statistical optimization, interaction analysis and desorption studies for the azo dyes adsorption onto chitosan films. Journal of Colloid and Interface Science, 411, 27–33.

Robinson, T., McMullan, G., Marchant, R., & Nigam, P. (2001). Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative. Bioresource Technology, 77, 247–255.

Vakili, M., Rafatullah, M., Salamatinia, B., Abdullah, A. Z., Ibrahim, M. H., Tan, K. B., and Amouzgar, P. (2014). Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: A review. Carbohydrate Polymers, 113, 115–130.

Vasquez-Ortega, M., Ortega, M., Morales, J., Olayo, M. G., Cruz, G. J., & Olayo, R. (2014). Core-shell polypyrrole nanoparticles obtained by atmospheric pressure plasma polymerization. Polymer International, 63, 2023–2029.

Velásquez, C. L. (2003). Algunos usos del quitosano en sistemas acuosos. Revista Iberoamericana de Polímeros, 4, 91.

Zheng, L., Dang, Z., Yi, X., & Zhang, H. (2010). Equilibrium and kinetic studies of adsorption of Cd(II) from aqueous solution using modified corn stalk. Journal of Hazardous Materials, 176, 650–656.

Ziani, K., Oses, J., Coma, V., & Maté, J. I. (2008). Effect of the presence of glycerol and Tween 20 on the chemical and physical properties of films based on chitosan with different degree of deacetylation. LWT - Food Science and Technology, 41, 2159–2165.
Published
2020-01-26
How to Cite
Balderas-Gutiérrez, J., Hernández-Tenorio, C., Zavala-Arce, R., Pacheco-Sánchez, J., García-Gaitán, B., & Illescas, J. (2020). Chitosan films modified with glow discharge plasma in aqueous solution of pyrrole and its evaluation in the removal of red dye no. 2. Revista Mexicana De Ingeniería Química, 19(3), 1291-1299. https://doi.org/10.24275/rmiq/IA893
Section
Environmental Engineering