Effect of thermal and argon plasma treatment in SiO2 spheres, assessing the effectiveness in the elimination of organic waste

  • R. Reyna-Martinez
  • R.I. Narro-Céspedes
  • Y.K. Reyes-Acosta
  • A. Martínez-Luevanos
  • A. Zugasti-Cruz
  • M.G. Neira-Velazquez
  • S. Sánchez-Valdés
  • G. Soría-Arguello
  • M.C. Ibarra-Alonso
Keywords: Biomedical applications, Plasma treatment, Silica Oxide, Heat treatment


Cetyltrimethylammonium bromide (CTAB), is a cationic surfactant used in synthesis of silica oxide spheres (SiO2), which can be used in biomedical applications, however, CTAB is cytotoxic and residues can be found within the SiO2 pores, therefore, the removal of CTAB, is crucial. In the present work, the preparation and purification of SiO2 is described. The effect of heat treatment against argon plasma treatment on SiO2 spheres and their efficiency in removing CTAB was analyzed. The plasma treatment was performed using argon, at 50, 100, 150 and 200 W of power, for 1 h, it was also performed at 200 W for 1.5 h. The techniques; DLS, FTIR-ATR, SEM, BET, were used for characterization, in addition to hemolysis studies. The results showed a decrease in surfactant at powers of 150 and 200 W and 1 h. The plasma treatment at 200 W and 1.5 h of treatment, according to the FTIR-ATR, caused a total removal of the surfactant and a 16% increase in the surface area according to the BET analysis, the plasma treatment turned out not to be hemolytic.


Alkilany, A. M., Nagaria, P. K., Hexel, C. R., Shaw, T. J., Murphy, C. J., & Wyatt, M. D. (2009). Cellular uptake and cytotoxicity of gold nanorods: Molecular origin of cytotoxicity and surface effects. Small, 5(6), 701–708. https://doi.org/10.1002/smll.200801546
ASTM F756-00, Standard Practice for Assessment of Hemolytic Properties of Material, ASTM International, West Conshohocken, PA, 2004.
Bing Li, Yun Chen, Wei Huang, Wenzhong Yang, Xiao Shuang, YinYing (2016) In vitro degradation, cytocompatibility and hemolysis tests of CaF2 doped TiO2-SiO2 composite coating on AZ31 alloy. Applied Surface Science 268-279.
Centre, C. C., & Sarmadi, M. (2013). Advantages and Disadvantages of Plasma Treatment of Textile Materials. International Symposium on Plasma Chemistry, (August), 7–10.
Gao, H., Zhou, Y., Sheng, X., Zhao, S., Zhang, C., & Zhang, M. (2018). Synthesis of core-shell and hollow structured dual-mesoporous silica templated by alkoxysilyl-functionalized ionic liquids and CTAB. Materials Letters, 211, 126–129. https://doi.org/10.1016/j.matlet.2017.09.067
He, S., Huang, Y., Chen, G., Feng, M., Dai, H., Yuan, B., & Chen, X. (2019). Effect of heat treatment on hydrophobic silica aerogel. Journal of Hazardous Materials, 362(March 2018), 294–302. https://doi.org/10.1016/j.jhazmat.2018.08.087
Hudson, S. P., Padera, R. F., Langer, R., & Kohane, D. S. (2008). The biocompatibility of mesoporous silicates. Biomaterials, 29(30), 4045–4055. https://doi.org/10.1016/j.biomaterials.2008.07.007
Jian C, Yingda M, Chun W, Wenyan H, Yamin C, Tingting W, Jian L, Lailiang O (2019) Preparation of chitosan/SiO2-loaded graphene composite beads for efficient removal of bilirubin. Carbon 352-361.
Lei, Y., Chen, X., Song, H., Hu, Z., & Cao, B. (2017). The influence of thermal treatment on the microstructure and thermal insulation performance of silica aerogels. Journal of Non-Crystalline Solids, 470(May), 178–183. https://doi.org/10.1016/j.jnoncrysol.2017.05.020
López-Alemany, A., Compañ, V., & Refojo, M. F. (2002). Porous structure of PurevisionTM versus Focus® Night&DayTM and conventional hydrogel contact lenses. Journal of Biomedical Materials Research, 63(3), 319–325. https://doi.org/10.1002/jbm.10186
Madhura J, Robert R, Yannan Z, Brian G (2013) Interaction effects of mesoporous silica nanoparticles with different morphologies on human red blood cells. RSC Advances 2454-2461.
Martínez, M. L., Falcón, H., Beltramone, A. R., & Anunziata, O. A. (2016). Synthesis and characterization of 2D-hexagonal, 3D-hexagonal and cubic mesoporous materials using CTAB and silica gel. Materials and Design, 104, 251–258. https://doi.org/10.1016/j.matdes.2016.05.038
Meier, M., Ungerer, J., Klinge, M., & Nirschl, H. (2018). Synthesis of nanometric silica particles via a modified Stöber synthesis route. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 538(November 2017), 559–564. https://doi.org/10.1016/j.colsurfa.2017.11.047
Palaniappan, A., Zhang, J., Su, X., & Tay, F. E. H. (2004). Preparation of mesoporous silica films using sol-gel process and argon plasma treatment. Chemical Physics Letters, 395(1–3), 70–74. https://doi.org/10.1016/j.cplett.2004.07.060
Rahman, I. A., & Padavettan, V. (2012). Synthesis of Silica nanoparticles by Sol-Gel: Size-dependent properties, surface modification, and applications in silica-polymer nanocompositesa review. Journal of Nanomaterials, 2012. https://doi.org/10.1155/2012/132424
Reyna-Martínez, R., Céspedes, R. I. N., Alonso, M. C. I., & Acosta, Y. K. R. (2018). Use of Cold Plasma Technology in Biomaterials and Their Potential Utilization in Controlled Administration of Active Substances. 4(5). https://doi.org/10.19080/JOJMS.2018.04.555649
Santos-Beltrán, A., Santos-Beltrán, M., Paraguay-Delgado, F., Fuentes, L., García, R., & Orozco, V. G. (2018). Heat treatment effect of MoO3on the MB removal and its reuse. Journal of Physics and Chemistry of Solids, 121(March), 266–275. https://doi.org/10.1016/j.jpcs.2018.05.030
Schachter, D. (2013). The Source of toxicity of CTAB-Stabilized Gold Nanorods. Graduate School - New Brunswick Electronic Theses and Dissertations, (January 2013), 61. https://doi.org/doi:10.7282/T3X63KMS
Soria-Arguello, G., Cruz-Delgado, V. J., Neira-Velazquez, G., Zendejo-Covarrubias, R., Borjas-Ramos, J., Arias-Garcia, G., … Narro-Cespedes, R. I. (2018). Surface Modification of Graphene Nanoparticles With Ethylene Plasma in Rotary Plasma Reactor for the Preparation of GnP/HDPE Nanocomposites. IEEE Transactions on Plasma Science, 46(7), 2402–2406. https://doi.org/10.1109/tps.2018.2823585
Tang, Q., Xu, Y., Wu, D., & Sun, Y. (2006). A study of carboxylic-modified mesoporous silica in controlled delivery for drug famotidine. Journal of Solid State Chemistry, 179(5), 1513–1520. https://doi.org/10.1016/j.jssc.2006.02.004
Vidonish, J. E., Zygourakis, K., Masiello, C. A., Sabadell, G., & Alvarez, P. J. J. (2016). Thermal Treatment of Hydrocarbon-Impacted Soils: A Review of Technology Innovation for Sustainable Remediation. Engineering, 2(4), 426–437. https://doi.org/10.1016/J.ENG.2016.04.005
Wang, Y., Zhao, Q., Han, N., Bai, L., Li, J., Liu, J., … Wang, S. (2015). Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomedicine: Nanotechnology, Biology, and Medicine, 11(2), 313–327. https://doi.org/10.1016/j.nano.2014.09.014
WaWang, H., Liu, Y., Li, M., Huang, H., Xu, H.M., Hong, R.J., Shen, H., 2010. Optoelectron. Adv. Mater. Rapid Commun. 4, 1166–1169.ng, H., Liu, Y., Li, M., Huang, H., Xu, H. M., Hong, R. J., & Shen, H. (2010). Multifunctional TiO2nanowires-modified nanoparticles bilayer film for 3D dye-sensitized solar cells. Optoelectronics and Advanced Materials, Rapid Communications, 4(8), 1166–1169. https://doi.org/10.1039/b000000x
Y. Lei, X. Chen, H. Song, Z. Hu, and B. Cao, “The influence of thermal treatment on the microstructure and thermal insulation performance of silica aerogels,” J. Non. Cryst. Solids, vol. 470, pp. 178–183, 2017
Y. Wang, J. Chen, X. Lei, Y. Ren, and J. Wu, “Preparation of high silica microporous zeolite SSZ-13 using solid waste silica fume as silica source,” Adv. Powder Technol., vol. 29, no. 5, pp. 1112–1118, 2018.
Zhao, S., Zhang, Y., Zhou, Y., Sheng, X., Zhang, C., Zhang, M., & Fang, J. (2016). One-step synthesis of core-shell structured mesoporous silica spheres templated by protic ionic liquid and CTAB. Materials Letters, 178, 35–38. https://doi.org/10.1016/j.matlet.2016.04.182
How to Cite
Reyna-Martinez, R., Narro-Céspedes, R., Reyes-Acosta, Y., Martínez-Luevanos, A., Zugasti-Cruz, A., Neira-Velazquez, M., Sánchez-Valdés, S., Soría-Arguello, G., & Ibarra-Alonso, M. (2019). Effect of thermal and argon plasma treatment in SiO2 spheres, assessing the effectiveness in the elimination of organic waste. Revista Mexicana De Ingeniería Química, 19(3), 1071-1080. https://doi.org/10.24275/rmiq/Mat906