Semi-continuous anaerobic co-digestion of vegetable waste and cow manure: a study of process stabilization

  • L. R. Miramontes-Martínez
  • R. Gomez-Gonzalez
  • J. E. Botello-Álvarez
  • C. Escamilla-Alvarado
  • A. Albalate-Ramírez
  • P. Rivas-García
Keywords: Anaerobic co-digestion, Vegetable waste, Cow manure, Anaerobic Digestion Model No. 1, Process stability

Abstract

The anaerobic digestion of vegetable waste (VW) often shows the accumulation of fatty acids and low buffering capacity that promotes instability and low methane productivity. This work evaluated the anaerobic co-digestion of VW with cow manure (CM) as a strategy to improve the process stability. As a reaction system, a 4 L semi-continuous stirred tank reactor with an HRT of 20 days and fed with a substrate formulation of 40 g of VS was used in two periods: 34 days of VW mono-digestion and 26 days of VW:CM co-digestion. The mono and co-digestion processes were numerically evaluated through three analysis tools: a proposed co-digestion model embedded in the Anaerobic Digestion Model No. 1 structure, statistical process control theory, and modeling the pH dynamics as the response of a first-order linear system to an impulse manipulation. The mono-digestion process showed productivity of 0.381 L CH4 L digester-1 d-1, which increased by 14 % during co-digestion. The results also indicated that in VW:CM co-digestion, the pH dynamics presents a slower response to the daily feed induced by pulses, keeping the values of this parameter within the statistical stability range; as well as the early warning indicator IA/BA (ratio between intermediate and bicarbonate alkalinity) outside the failure thresholds. It was shown that the addition of CM to a mono-digestion of VW increases the buffer capacity of the system and the production of CH4, promoting a stable and efficient process.

References

Abubaker, J., Risberg, K. and Pell, M. (2012). Biogas residues as fertilisers – Effects on wheat growth and soil microbial activities. Applied Energy 99, 126–134.

Alvarez, R. and Lidén, G. (2008). Semi-continuous co-digestion of solid slaughterhouse waste, manure, and fruit and vegetable waste. Renewable Energy 33, 726–734.

Anderson, G.K. and Yang, G. (1992). Determination of bicarbonate and total volatile acid concentration in anaerobic digesters using a simple titration. Water Environment Research 64, 53–59.

AOAC Official Methods of Analysis. (1998). In: Association of Official Agricultural Chemists Volume 16th. Gaithersburg, USA.

APHA American Public Health Association. (1992). Standard methods for examinations of water and wastewater. Washington, D.C., USA.

Arnell, M., Astals, S., Åmand, L., Batstone, D.J., Jensen, P.D. and Jeppsson, U. (2016). Modelling anaerobic co-digestion in Benchmark Simulation Model No. 2: Parameter estimation, substrate characterisation and plant-wide integration. Water Research 98, 138–146.

Astals, S., Ariso, M., Galí, A. and Mata-Alvarez, J. (2011). Co-digestion of pig manure and glycerine: Experimental and modelling study. Journal of Environmental Management 92, 1091–1096.

Astals, S., Batstone, D.J., Mata-Alvarez, J. and Jensen, P.D. (2014). Identification of synergistic impacts during anaerobic co-digestion of organic wastes. Bioresource Technology 169, 421–427.

Batstone, D.J., Keller, J., Angelidaki, I., Kalyuzhnyi, S.V., Pavlostathis, S.G., Rozzi, A. and Vavilin, V.A. (2002). Anaerobic Digestion Model No. 1 (ADM1) Scientific and Technical Report No. 13. London.

Boe, K. (2006). Online monitoring and control of the biogas process. Technical University of Denmark.

Boe, K. and Angelidaki, I. (2009). Serial CSTR digester configuration for improving biogas production from manure. Water Research 43, 166–172.

Breeze, P. (2018). Landfill waste disposal, anaerobic digestion, and energy production. In: Energy from Waste, 39–47.

Callaghan, F.J., Wase, D.A.J., Thayanithy, K. and Forster, C.F. (2002). Continuous co-digestion of cattle slurry with fruit and vegetable wastes and chicken manure. Biomass and Bioenergy 22, 71–77.

CEDA. (2011). Central de Abastos de la Ciudad de Mexico. Electronic book.

Chakraborty, D. and Mohan, S.V. (2018). Effect of food to vegetable waste ratio on acidogenesis and methanogenesis during two-stage integration. Bioresource Technology 254, 256–263.

Cheng, H. and Hu, Y. (2010). Municipal solid waste (MSW) as a renewable source of energy: Current and future practices in China. Bioresource Technology 101, 3816–3824.

De Baere, L. (2006). Will anaerobic digestion of solid waste survive in the future? Water Science and Technology 53, 187–194.

Dennehy, C., Lawlor, P.G., Gardiner, G.E., Jiang, Y., Cormican, P., McCabe, M.S. and Zhan, X. (2017). Process stability and microbial community composition in pig manure and food waste anaerobic co-digesters operated at low HRTs. Frontiers of Environmental Science & Engineering 11.

Di Maria, F., Sordi, A., Cirulli, G. and Micale, C. (2015). Amount of energy recoverable from an existing sludge digester with the co-digestion with fruit and vegetable waste at reduced retention time. Applied Energy 150, 9–14.

Draa, K.C., Voos, H., Darouach, M. and Alma, M. (2015). A Formal modeling framework for anaerobic digestion systems. 2015 17th UKSim-AMSS International Conference on Modelling and Simulation (UKSim), 426–431.

Durmaz, B. and Sanin, F.D. (2003). Effect of carbon to nitrogen ratio on the physical and chemical properties of activated sludge. Environmental Technology 24, 1331–1340.

Ebner, J.H., Labatut, R.A., Lodge, J.S., Williamson, A.A. and Trabold, T.A. (2016). Anaerobic co-digestion of commercial food waste and dairy manure: Characterizing biochemical parameters and synergistic effects. Waste Management 52, 286–294.

Escamilla-Alvarado, C., Poggi-Varaldo, H.M. and Ponce-Noyola, M.T. (2017). Bioenergy and bioproducts from municipal organic waste as alternative to landfilling: a comparative life cycle assessment with prospective application to Mexico. Environmental Science and Pollution Research 24, 25602–25617.

Gustavsson, J., Cederberg, C., Sonesson, U., Van Otterdijk. R. and Meybeck, A. (2011). Global food losses and food waste: Extent, causes and prevention. FAO.

FAO statistical yearbook 2014. (2014). Asia and the Pacific Food and Agriculture FAO.

Frolund, B., Griebe, T. and Nielsen, P. (1995). Enzymatic activity in the activated sludge flocmatrix. Applied Microbiology and Biotechnology 43, 755–761.

García-Gen, S., Sousbie, P., Rangaraj, G., Lema, J.M., Rodríguez, J., Steyer, J.P. and Torrijos, M. (2015). Kinetic modelling of anaerobic hydrolysis of solid wastes, including disintegration processes. Waste Management 35, 96–104.

Garcia-Peña, E.I., Parameswaran, P., Kang, D.W., Canul-Chan, M. and Krajmalnik-Brown, R. (2011). Anaerobic digestion and co-digestion processes of vegetable and fruit residues: Process and microbial ecology. Bioresource Technology 102, 9447–9455.

Gavilán, A., Escamilla-Alvarado, C., Martínez, M.A. and Ramírez, T. (2018). Municipal solid waste management. In: Progress and opportunities for reducing short-lived climate pollutants across Latin America and the Caribbean, (L.T. Molina ed.), Pp. 118–135. UNEP and Climate and Clean Air Coalition.

Gerardi, M.H. (2003). The Microbiology of Anaerobic Digesters. John Wiley & Sons, Inc.

Hartmann, H. and Ahring, B.K. (2006). Strategies for the anaerobic digestion of the organic fraction of municipal solid waste: an overview. Water Science and Technology 53, 7–22.

Holm-Nielsen, J.B., Al Seadi, T. and Oleskowicz-Popiel, P. (2009). The future of anaerobic digestion and biogas utilization. Bioresource Technology 100, 5478–5484.

IPEA. (2011). Caderno diagnóstico - resíduos sólidos urbanos. Available in: http://www.cnrh.gov.br/projetos/%0Apnrs/documentos/cadernos/0.pdf. Accessed in: May 2018.

Jiang, Y., Heaven, S. and Banks, C.J. (2012). Strategies for stable anaerobic digestion of vegetable waste. Renewable Energy 44, 206–214.

Kafle, G.K., Bhattarai, S., Kim, S.H. and Chen, L. (2014). Effect of feed to microbe ratios on anaerobic digestion of Chinese cabbage waste under mesophilic and thermophilic conditions: Biogas potential and kinetic study. Journal of Environmental Management 133, 293–301.

Knol, W., Van Der Most, M.M. and De Waart, J. (1978). Biogas production by anaerobic digestion of fruit and vegetable waste. A preliminary study. Journal of the Science of Food and Agriculture 29, 822–830.

Li, D., Chen, L., Liu, X., Mei, Z., Ren, H., Cao, Q. and Yan, Z. (2017). Instability mechanisms and early warning indicators for mesophilic anaerobic digestion of vegetable waste. Bioresource Technology 245, 90–97.

Li, L., He, Q., Wei, Y., He, Q. and Peng, X. (2014). Early warning indicators for monitoring the process failure of anaerobic digestion system of food waste. Bioresource Technology 171, 491–494.

Lin, J., Zuo, J., Gan, L., Li, P., Liu, F., Wang, K. and Gan, H. (2011). Effects of mixture ratio on anaerobic co-digestion with fruit and vegetable waste and food waste of China. Journal of Environmental Sciences 23, 1403–1408.

Liu, X., Gao, X., Wang, W., Zheng, L., Zhou, Y. and Sun, Y. (2012). Pilot-scale anaerobic co-digestion of municipal biomass waste: Focusing on biogas production and GHG reduction. Renewable Energy 44, 463–468.

Madigan, M.T., Martinko, J.M. and Brock, T.D. (2006). Brock biology of microorganisms. Pearson Prentice Hall, Ed.

Masebinu, S.O., Akinlabi, E.T., Muzenda, E., Aboyade, A.O. and Mbohwa, C. (2018). Experimental and feasibility assessment of biogas production by anaerobic digestion of fruit and vegetable waste from Joburg Market. Waste Management 75, 236–250.

Mata-Alvarez, J., Dosta, J., Romero-Güiza, M.S., Fonoll, X., Peces, M. and Astals, S. (2014). A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renewable and Sustainable Energy Reviews 36, 412–427.

Mata-Alvarez, J., Llabrés, P., Cecchi, F. and Pavan, P. (1992). Anaerobic digestion of the Barcelona central food market organic wastes: Experimental study. Bioresource Technology 39 (1), 39–48.

Matheri, A.N., Ndiweni, S.N., Belaid, M., Muzenda, E. and Hubert, R. (2017). Optimising biogas production from anaerobic co-digestion of chicken manure and organic fraction of municipal solid waste. Renewable and Sustainable Energy Reviews 80, 756–764.

Meng, X., Yu, D., Wei, Y., Zhang, Y., Zhang, Q., Wang, Z. and Wang, Y. (2018). Endogenous ternary pH buffer system with ammonia-carbonates-VFAs in high solid anaerobic digestion of swine manure: An alternative for alleviating ammonia inhibition? Process Biochemistry 69, 144–152.

Norma Mexicana. (2013). NMX-AA-005-SCFI-2013. Análisis de agua - Medición de grasas y aceites recuperables en aguas naturales, residuales y residuales tratadas - Método de prueba. Normas Mexicanas. Dirección General de Normas.

Møller, H.B., Moset, V., Brask, M., Weisbjerg, M.R. and Lund, P. (2014). Feces composition and manure derived methane yield from dairy cows: Influence of diet with focus on fat supplement and roughage type. Atmospheric Environment 94, 36–43.

Montgomery, D.C. and Runger, G.C. (2002). Probabilidad y estadística aplicadas a la ingeniería. Limusa ed.

Mottet, A., Ramirez, I., Carrère, H., Déléris, S., Vedrenne, F., Jimenez, J. and Steyer, J.P. (2013). New fractionation for a better bioaccessibility description of particulate organic matter in a modified ADM1 model. Chemical Engineering Journal 228, 871–881.

Niu, M., Appuhamy, J.A.D.R.N., Dungan, R.S., Kebreab, E. and Leytem, A.B. (2017). Effects of diet and manure storage method on carbon and nitrogen dynamics during storage and plant nitrogen uptake. Agriculture, Ecosystems and Environment 250, 51–58.

Nopens, I., Batstone, D.J., Copp, J.B., Jeppsson, U., Volcke, E., Alex, J. and Vanrolleghem, P.A. (2009). An ASM/ADM model interface for dynamic plant-wide simulation. Water Research 43, 1913–1923.

Norma Mexicana (1994). NOM-116-SSA1-1994. Determinación de humedad en alimentos por tratamiento térmico - método por arena o gasa. Normas Mexicanas. Dirección General de Normas.

Norma Mexicana. (2009). NOM-242-SSA1-2009. Productos y servicios - productos de la pesca frescos, refrigerados, congelados y procesados - especificaciones sanitarias y métodos de prueba. Normas Mexicanas. Dirección General de Normas.

Norma Mexicana. (2011). NMX-F-608-NORMEX-2011. Alimentos - determinación de proteínas en alimentos - método de ensayo (prueba). Normas Mexicanas. Dirección General de Normas.

Norma Mexicana. (2013). NMX-F-607-NORMEX-2013. Alimentos - determinación de cenizas en alimentos - método de prueba. Normas Mexicanas. Dirección General de Normas.

AOAC Official Methods of Analysis. (1990). AOAC Official Method 962.09. In: Association of Official Agricultural Chemists. Gaithersburg, USA.

Page, L.H., Ni, J.Q., Zhang, H., Heber, A.J., Mosier, N.S., Liu, X. and Harrison, J.H. (2015). Reduction of volatile fatty acids and odor offensiveness by anaerobic digestion and solid separation of dairy manure during manure storage. Journal of Environmental Management 152, 91–98.

Pavi, S., Kramer, L.E., Gomes, L.P. and Miranda, L.A.S. (2017). Biogas production from co-digestion of organic fraction of municipal solid waste and fruit and vegetable waste. Bioresource Technology 228, 362–367.

Ripley, L.E., Boyle, W.C. and Converse, J.C. (1986). Improved alkalimetric monitoring for anaerobic digestion of high-strength wastes. Water Pollution Control Federation 58, 406–411.

Rivas-García, P., Botello-Álvarez, J.E., Miramontes-Martínez, L.R., Cano-Gómez, J.J. and Rico-Martínez, R. (2020). New model of hydrolysis in the anaerobic co-digestion of bovine manure with vegetable waste: Modification of Anerobic Digestion Model No. 1. Revista Mexicana de Ingeniería Química 19, 109–122.

Rivas-García, P., Botello-Álvarez, J.E., Estrada-Baltazar, A. and Navarrete-Bolaños, J.L. (2013). Numerical study of microbial population dynamics in anaerobic digestion through the Anaerobic Digestion Model No. 1 (ADM1). Chemical Engineering Journal 228, 87–92.

Scano, E.A., Asquer, C., Pistis, A., Ortu, L., Demontis, V. and Cocco, D. (2014). Biogas from anaerobic digestion of fruit and vegetable wastes: Experimental results on pilot-scale and preliminary performance evaluation of a full-scale power plant. Energy Conversion and Management 77, 22–30.

Schoen, M.A., Sperl, D., Gadermaier, M., Goberna, M., Franke-Whittle, I., Insam, H. and Wett, B. (2009). Population dynamics at digester overload conditions. Bioresource Technology 100, 5648–5655.

Shrestha, S., Fonoll, X., Khanal, S.K. and Raskin, L. (2017). Biological strategies for enhanced hydrolysis of lignocellulosic biomass during anaerobic digestion: Current status and future perspectives. Bioresource Technology 245, 1245–1257.

Shuler, M.L. and Kargi, F. (2002). Bioprocess engineering: Basic concepts. P. Hall Ed.

Siddique, M.N.I. and Wahid, Z.A. (2018). Achievements and perspectives of anaerobic co-digestion: A review. Journal of Cleaner Production 194, 359–371.

Tambone, F., Scaglia, B., D’Imporzano, G., Schievano, A., Orzi, V., Salati, S. and Adani, F. (2010). Assessing amendment and fertilizing properties of digestates from anaerobic digestion through a comparative study with digested sludge and compost. Chemosphere 81, 577–583.

Wang, X., Li, Z., Bai, X., Zhou, X., Cheng, S., Gao, R. and Sun, J. (2018). Study on improving anaerobic co-digestion of cow manure and corn straw by fruit and vegetable waste: Methane production and microbial community in CSTR process. Bioresource Technology 249, 290–297.

Whiting, A. and Azapagic, A. (2014). Life cycle environmental impacts of generating electricity and heat from biogas produced by anaerobic digestion. Energy 70, 181–193.

Xie, S., Hai, F.I., Zhan, X., Guo, W., Ngo, H.H., Price, W.E. and Nghiem, L.D. (2016). Anaerobic co-digestion: A critical review of mathematical modelling for performance optimization. Bioresource Technology 222, 498–512.

Zaher, U., Li, R., Jeppsson, U., Steyer, J.P. and Chen, S. (2009). GISCOD: General Integrated Solid Waste Co-Digestion model. Water Research 43, 2717–2727.

Zaman, A.U. (2010). Comparative study of municipal solid waste treatment technologies using life cycle assessment method. International Journal of Environmental Science and Technology 7, 225–234.

Zeynali, R., Khojastehpour, M. and Ebrahimi-Nik, M. (2017). Effect of ultrasonic pre-treatment on biogas yield and specific energy in anaerobic digestion of fruit and vegetable wholesale market wastes. Sustainable Environment Research 27, 259–264.
Published
2019-12-30
How to Cite
Miramontes-Martínez, L., Gomez-Gonzalez, R., Botello-Álvarez, J., Escamilla-Alvarado, C., Albalate-Ramírez, A., & Rivas-García, P. (2019). Semi-continuous anaerobic co-digestion of vegetable waste and cow manure: a study of process stabilization. Revista Mexicana De Ingeniería Química, 19(3), 1117-1134. https://doi.org/10.24275/rmiq/proc920
Section
Process engineering

Most read articles by the same author(s)