Trichoderma Asperellum, an inoculant for production of steviol glycoside in Stevia Rebaudiana bertoni plants micropropagated in a temporary immersion bioreactor

  • D. Villamarín-Gallegos
  • D. G. Oviedo-Pereira
  • S. Evangelista-Lozano
  • G. Sepúlveda-Jiménez
  • J. Molina-Torres
  • M. Rodríguez-Monroy
Keywords: In vitro culture, Phenolic compounds, Plant growth regulators, Natural sweetening compounds, Bioreactor


Stevia rebaudiana is a plant that synthesizes steviol glycosides, which are compounds with sweetening properties. The aim of this work was to evaluate the growth-promoting effect of a micropropagation system in a Temporary Immersion Bioreactor (TIB) and the inoculation with Trichoderma asperellum on the S. rebaudiana plants, and to determine their effect on the production of steviol glycosides and phenolic compounds. S. rebaudiana plants with intact roots were obtained using a TIB with Murashigue and Skoog medium and 0.37 mg L-1 indole butyric acid, and subsequent the plants were inoculated with spores of T. asperellum (4 x 104 spores mL-1). The growth of plants inoculated with the fungus was significantly larger than the plants uninoculated (control). The plants inoculated produced 3 times more steviol glycosides than the plants uninoculated (control); while, the content of phenolic compounds was similar. These results encourage the possibility of using a TIB and T. asperellum for the propagation and growth promotion of S. rebaudiana plants with high content of steviol glycosides.


Alvarenga, S. y Salazar, T. (2015). Micropropagación masiva de Stevia rebaudiana Bertoni en sistemas de inmersión temporal. Cultrop, La Habana 36:50-57.

Arencibia, A.D., Bernal, A., Yang, L., Cortegaza, L., Carmona, E.R., Pérez, A., Hu. C-J., Li, Y., Zayas, C.M. and Santana, I. (2008). New role of phenylpropanoid compounds during sugarcane micropropagation in temporary immersion bioreactors (TIBs). Plant Sci 175:487-496.

Bladt, S. y Zgainski, E. (1996). Plant Drug Analysis: A Thin Layer Chromatography Atlas. Springer Science & Business Media. Springer-Verlag; Brooklyn, NY, USA. ISBN 3-540-58676-8

Bobo-García, G., Davidov-Pardo, G., Arroqui, C., Vírseda, P., Marín-Arroyo, M. y Navarro M. (2015). Intra-laboratory validation of microplate methods for total phenolic content and antioxidant activity on polyphenolic extracts, and comparison with conventional spectrophotometric methods. J Sci Food Agric 95:204-209.

Botta, A.L., Santacecilia, A., Ercole, C., Cacchio, P. y Del Gallo, M. (2013). In vitro and in vivo inoculation of four endophytic bacteria on Lycopersicon esculentum. New Biotechnol 30:666-674.

Cai, F., Chen, W., Wei, Z., Pang, G., Li, R., Ran, W. y Shen, Q. (2015). Colonization of Trichoderma harzianum strain SQR-T037 on tomato roots and its relationship to plant growth, nutrient availability and soil microflora. Plant Soil 388:337-350.

Ceunen, S. y Geuns, J. (2013). Steviol glycosides: chemical diversity, metabolism, and function. J Nat Prod 76:1201-1228.

Kilam, D., Saifi, M. y Abdin, M.Z. (2015). Combined effects of Piriformospora indica and Azotobacter chroococcum enhance plant growth, antioxidant potential and steviol glycoside content in Stevia rebaudiana. Symbiosis 66:149-156.

Lemus-Mondaca, R., Vega-Gálvez, A., Zura-Bravo, L. y Ah-Hen, K. (2012). Stevia rebaudiana Bertoni, source of a high-potency natural sweetener: a comprehensive review on the biochemical, nutritional and functional aspects. Food Chem 132:1121-1132.

Mamta, R.P., Pathania, V., Gulati, A., Singh, B., Bhanwra, R.K. y Tewari, R. (2010). Stimulatory effect of phosphate-solubilizing bacteria on plant growth, stevioside, and rebaudioside A contents of Stevia rebaudiana Bertoni. Appl Soil Ecol 46:222-229.

Meenaa, V.S., Meenab, S.K., Vermad, J.P., Kumare, A., Aeronf, A., Mishraa, P.K., Bishta, J.K., Pattanayaka, A., Naveedg, M. y Dotaniyah, M.L. (2017). Plant beneficial rhizospheric microorganism (PBRM) strategies to improve nutrients use efficiency: A review. Ecological Engineering 107: 8–32.

Morlock, G., Meyer, S., Zimmermann, B. y Roussel, J. (2014). High-performance thin layer chromatography analysis of steviol glycosides in Stevia formulations and sugar-free food products, and benchmarking with (ultra) high performance liquid chromatography. J Chromatogr A 1350:102-111.

Mukherjee, M., Mukherjee, P., Horwitz, B., Zachow, C., Berg, G. y Zeilinger, S. (2012). Trichoderma-plant-pathogen interactions: advances in genetics of biological control. Indian J Microbiol 52:522-529.

Murashige, T. y Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473-497.

Ortega-García, J. G., Montes-Belmont, R., Rodríguez-Monroy, M., Ramírez-Trujillo, J.A., Suárez-Rodríguez, R. y Sepúlveda-Jiménez, G. (2015) Effect of Trichoderma asperellum applications and mineral fertilization on growth promotion and the content of phenolic compounds and flavonoids in onions. Sci Hortic 195:8-16.

Oviedo-Pereira, D., Alvarenga-Venutolo, S., Evangelista-Lozano, S., Sepúlveda-Jiménez, G. y Rodríguez-Monroy, M. (2015). Implementación de un sistema de Biorreactores de Inmersión Temporal (sBIT) para la propagación in vitro de plántulas de Stevia rebaudiana Bertoni. Memoria del 5 Congreso Internacional Biología, Química, Agronomía.

Pérez-Montaño, F., Alias-Villegas, C., Bellogin, R., del Cerro, P., Espuny, M., Jiménez-Guerrero, I. y Cubo, T. (2014). Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production. Microbiol Res 169:325-336.

Ramírez-Mosqueda, M. A. e Iglesias-Andreu, L. G. (2016). Evaluation of different temporary immersion systems (BIT®, BIG and RITA®) in the micropropagation of Vanilla planifolia Jacks. In Vitro Cell Dev Biol Plant 52:154-160.

Singh, P., Dwivedi, P. y Atri, N. (2014). In vitro shoot multiplication of stevia and assessment of stevioside content and genetic fidelity of the regenerants. Sugar Tech 16:430.

Shivanna, N., Naika, M., Khanum, F. y Kaul, V. (2013). Antioxidant, anti-diabetic, and renal protective properties of Stevia rebaudiana. J Diabetes Complications 27:103-113.

Sofo, A., Tataranni, G., Xiloyannis, C., Dichio, B. y Scopa, A. (2012). Direct effects of Trichoderma harzianum strain T-22 on micropropagated shoots of GiSeLa6® (Prunus cerasus×Prunus canescens) rootstock. Environ Exp Bot 76:33-38.

Tavarini, S., Passera, B., Martini, A., Avio, L., Sbrana, C., Giovannetti, M. y Angelini, L. (2018). Plant growth, steviol glycosides and nutrient uptake as affected by arbuscular mycorrhizal fungi and phosphorous fertilization in Stevia rebaudiana Bert. Ind Crops Prod 111:899-907.

Thiyagarajan, M. y Venkatachalam, P. (2012). Large scale in vitro propagation of Stevia rebaudiana (Bert.) for commercial application: pharmaceutically important and antidiabetic medicinal herb. Ind Crops Prod 37:111-117.

Welander, M., Persson, J., Asp, H. y Zhu, L. H. (2014). Evaluation of a new vessel system based on temporary immersion system for micropropagation. Sci Hortic 179:227-232.

Wölwer-Rieck, U. (2012). The leaves of Stevia rebaudiana (Bertoni), their constituents and the analyses thereof. A Review. J Agric Food Chem 60:886-895.
How to Cite
Villamarín-Gallegos, D., Oviedo-Pereira, D., Evangelista-Lozano, S., Sepúlveda-Jiménez, G., Molina-Torres, J., & Rodríguez-Monroy, M. (2020). Trichoderma Asperellum, an inoculant for production of steviol glycoside in Stevia Rebaudiana bertoni plants micropropagated in a temporary immersion bioreactor. Revista Mexicana De Ingeniería Química, 19(3), 1153-1161.