Cobalt and copper nanoparticles on partially reduced graphene oxide interlayer spacing carbon nanotubes or carbon black as catalysts for oxygen reduction reaction

  • Y.Y. Rivera-Lugo
  • C. Silva-Carrillo
  • B. Trujillo-Navarrete
  • E.A. Reynoso-Soto
  • T. Romero-Castañón
  • S.W. Lin-Ho
  • J.C. Calva-Yañez
  • F. Paraguay-Delgado
  • R.M. Félix-Navarro http://orcid.org/0000-0003-3178-1164
Keywords: ORR, spacers, graphene, nanocomposites, Pt-free catalysts, fuel cells, alkaline, power generation

Abstract

In this paper, we reported the synthesis of Co and Cu nanoparticles (NPs) supported on partially reduced graphene oxide (M/rGO), with the incorporation of spacers as multi-walled carbon nanotubes (MWCNT) and carbon black (CB) among graphene interlayers to generate carbon nanocomposites. The oxygen reduction reaction (ORR) polarization curves show that the use of MWCNT as spacer improves the current density up to 6.9 times for Co NPs and up to 3.5 times for Cu NPs materials. Also, the charge transfer resistance decreases using CB: 950 times for Co NPs and 68 for Cu NPs materials. All carbon-nanocomposites present upgraded stability comparing to the commercial platinum catalyst (Pt/C).

References

Ediger, V.Ş. (2019). An integrated review and analysis of multi-energy transition from fossil fuels to renewables. Energy Procedia 156, 2-6.
Flores, R., Muñoz-Ledo, R., Flores, B.B. and Cano, K.I. (2008). Power generation from biomass estimation for projects of the clean development mechanism program. Rev. Mex. Ing. Quim. 7, 35-39.
Arshad, A., Ali, H.M., Habib, A., Bashir, M.A., Jabbal, M. and Yan, Y. (2019). Energy and exergy analysis of fuel cells: A review. Therm. Sci. and Eng. Prog. 9, 308-321.
Pan, Z.F., An, L., Zhao, T.S. and Tang, Z.K. (2018). Advances and challenges in alkaline anion exchange membrane fuel cells. Prog. in Energy and Combustion Sci. 66, 141-175.
Norskov, J.K., Rossmeisl, J., Logadottir, A. and Lindqvist, L. (2004). Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. J. Phys. Chem. B 108, 17886-17892.
Valdez-Ojeda, R., Aguilar-Espinosa, M., Gómez-Roque, L., Canto-Canché, B., Escobedo Gracia-Medrano, R.M., Domínguez-Maldonado, J. and Alzate-Gaviria, L. (2014). Genetic identification of the bioanode and biocathode of a microbial electrolysis cell. Rev. Mex. Ing. Quim. 13, 573-581.
Marinkas, A., Arena, F., Mitzel, J., Prinz, G.M., Heinzel, A., Peinecke, V. and Natter, H. (2013). Graphene as catalyst support: the influences of carbon additives and catalyst preparation methods on the performance of PEM fuel cells. Carbon 58, 139-150.
Park, S., Shao, Y., Wan, H., Rieke, P.C., Viswanathan V.V., Towne, S.A. and Wang, Y. (2011). Design of graphene sheets-supported Pt catalyst layer in PEM fuel cells. Electrochem. Commun. 13, 258-261.
Li, K., Li, H., Li, M., Su, L., Qian, L. and Yang, B. (2019). Carbon-nanotube@graphene core-shell nanostructures as active material in flexible symmetrical supercapacitors. Composites Sci. and Technol. 175, 92-99.
Li, Y., Li, Y., Zhu, E., McLouth, T, Chiu, C. Y., Huang, X. and Huang, Y. (2012). Stabilization of high-performance oxygen reduction reaction Pt electrocatalyst supported on reduced graphene oxide/carbon black composite. J. Am. Chem. Soc. 134, 12326-12329.
Fu, K., Wang, Y., Mao, L., Jin, J., Yang, S. and Li, G. (2018). Facile morphology controllable synthesis of PtPd nanorods on graphene-multiwalled carbon nanotube hybrid support as efficient electrocatalysts for oxygen reduction reaction. Mater. Res. Bulletin 108, 187-194.
Vanýsek, P. (2009). In: CNC Handbook of Chemistry and Physics, (Taylor and Francis Group), p. 23. CRC Press, Boca Raton.
Garapati, M. S. and Sundara, R. (2019). Highly efficient and ORR active platinum-scandium alloy-partially exfoliated carbon nanotubes electrocatalyst for Proton Exchange Membrane Fuel Cell. Int. J. Hydrogen Energy 44, 10951-10963.
Yan, Z., Gao, L., Dai, C., Zhang, M., Lv, X. and Shen, P.K. (2018). Metal-free mesoporous carbon with higher contents of active N and S cooping by template method for superior ORR efficiency to Pt/C. Int. J. Hydrogen Energy 43, 3705-3715.
Reyes-Cruzaley, A.P., Felix-Navarro, R.M., Trujillo-Navarrete, B., Silva-Carrillo, C., Zapata-Fernandez, J.R., Romo-Herrera, J.M., Contreras, O.E. and Reynoso-Soto, E.A. (2019). Synthesis of novel Pd NP-PTH-CNTs hybrid material as catalyst for H2O2 generation. Electrochim. Acta 296. 575-581.
Marcano, D.C., Kosynkin, D.V., Berlin, J.M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L.B., Lu, W. and Tour, J.M. (2010). Improved synthesis of graphene oxide. ACS Nano 4, 4806-4814.
Hummers, W.S. and Offeman, R.E. (1958). Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339.
Rivera-Lugo, Y.Y., Salazar-Gastélum, M.I., López-Rosas, D.M., Reynoso-Soto, E.A., Pérez-Sicairos, S., Velraj, S., Flores-Hernández, J.R. and Félix-Navarro, R.M. (2018). Effect of template, reaction time and platinum concentration in the synthesis of PtCu/CNT catalyst for PEMFC applications. Energy 148, 561-570.
Pollet, B.G. (2014). Let´s not ignore the ultrasonic effects on the preparation of fuel cell materials. Electrocatalysis 5, 330-343.
Jeong, H.K., Lee, Y.P., Lahaye, R.J.W. E., Park, M.H., An, K.H., Kim, I.J., Yang, C.W., Park, C.Y., Ruoff, R.S. and Lee, Y.H. (2008). Evidence of nearly flat layers and AB stacking order of graphite oxides. J. Am. Chem. Soc. 130, 1362- 1366.
Jeong, H-K., Lee, Y.P., Jin, M.H., Kim, E.S., Bae, J.J. and Lee, Y.H. (2009). Thermal stability of graphite oxide. Chem. Phys. Lett. 470, 255-258.
Shen, J., Hu, Y., Shi, M., Lu, X., Qin, C., Li, C. and Ye, M. (2009). Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets. Chem. Mater. 21, 3514-3520.
Wilson, N.R., Pandey, P.A., Beanland, R., Young, R.J., Kinloch, I.A., Gong, L., Liu, Z., Suenaga, K., Rourke, J.P., York, S.J. and Sloan, J. (2009). Graphene oxide: structural analysis and applications as a highly transparent support for electron microscopy. ACS Nano 3; 2547-2556.
Bard, A.J. and Faulkner, J.R. (2001). In: Electrochemical Methods: Fundamental and Applications, p. 341. John Wiley & Sons, New York.
Şanli, L.I., Bayram, V., Ghobadi, S., Düzen, N. and Gürsel, S.A. (2017). Engineered catalyst layer design with graphene-carbon black hybrid supports for enhanced platinum utilization in PEM fuel cell. Int. J. Hydrogen Energy 42, 1085-1092.
Cheng, Y., Zhang, H., Varanasi, C.V. and Liu, J. (2013). Highly efficient oxygen reduction electrocatalysts based on winged carbon nanotubes. Scientific Reports 3, 3195-3199.
Li, Y., Li, Z., Lei, L., Lan, T., Li, Y., Li, P., Lin, X., Liu, R., Huang, Z., Fen, X. and Ma, Y. (2019). Chemical vapor deposition-grown carbon nanotubes/graphene hybrids for electrochemical energy storage and conversion. FlatChem 15, 100091-100108.
Published
2020-06-05
How to Cite
Rivera-Lugo, Y., Silva-Carrillo, C., Trujillo-Navarrete, B., Reynoso-Soto, E., Romero-Castañón, T., Lin-Ho, S., Calva-Yañez, J., Paraguay-Delgado, F., & Félix-Navarro, R. (2020). Cobalt and copper nanoparticles on partially reduced graphene oxide interlayer spacing carbon nanotubes or carbon black as catalysts for oxygen reduction reaction. Revista Mexicana De Ingeniería Química, 20(1), 67-75. https://doi.org/10.24275/rmiq/Mat961

Most read articles by the same author(s)