Effect of the concentration of starch and clove essential oil on the physicochemical properties of biodegradable films

  • O.I. Buso-Ríos
  • G. Velázquez
  • L. Járquin-Enríquez
  • N.L. Flores-Marínez
Keywords: edible films, starch, essential oil, mechanical properties, GAB model, adsorption isotherms.

Abstract

Biodegradable films were obtained with the casting method using different concentrations of purple sweetpotato Ipomoea batatas (L.) starch and clove Syzygium aromaticum (L.) essential oil. Mechanical properties (tensile strength, percentage of elongation and Young's modulus), water vapor permeability and film adsorption isotherms were evaluated. In the formulations containing the intermediate concentrations of the components, a homogeneous surface, an improvement in fracture stress and a decrease in water vapor permeability were observed. The statistical analysis showed a significant difference in the mechanical properties of the composite films (p < 0.05). The GAB model was used to adjust the experimental data of the adsorption isotherms and a higher moisture content of the films containing the highest concentration of starch and essential oil was observed. The F6 (starch 3.5%, clove essential oil 60 mg/L) formulation showed the lowest water vapor permeability values (1x10-8 g/ m s Pa) and the lowest moisture content in the monolayer, which is considered to be the material with the best characteristics for its possible application, avoiding the excessive use of raw material during its preparation.

References

Abdel Aziz, M. S., Salama, H. E., and Sabaa, M. W. (2018). Biobased alginate/castor oil edible films for active food packaging. Food Science and Technology, 96, 455–460. https://doi.org/10.1016/j.lwt.2018.05.049

Albertos, I., Martin-Diana, A., Burón, M. and Rico, D. (2019). Development of functional bio-based seaweed (Himanthalia elongata and Palmaria palmata) edible films for extending the shelflife of fresh fish burgers. Food Packaging and Shelf Life, 22, 1-9. https://doi.org/10.1016/j.fpsl.2019.100382

ASTM D882. (2002). Tensile properties of thin plastic sheets. American Society for Testing and Materials. U.S.

ASTM E96. (2010). Transmission of wáter vapor materials. American Society for Testing and Materials. U.S.

ASTM E104. (2002). Maintenance of the relative humidity by mean of aqueous solutions. American Society for Testing and Materials. U.S.

Bertuzzi A, Castro F, Armada M y Gottifredi C. (2006). Water Vapor Permeability of Edible Starch Based Films. Elsevier Ltd. All rights reserved. http://doi: 10.1016/j.jfoodeng.2006.07.016.

Campos, C. Gerschenson, L y Flores, S. (2011). Development of edible films and coatings with antimicrobial activity. Food Bioprocess Technology. 4:849-875. https://doi.org/10.1007/s11947-010-0434-1

Cao, L., Liu, W., and Wang, L. (2018). Developing a green and edible film from Cassia gum: The effects of glycerol and sorbitol. Journal of Cleaner Production. 175, 276–282. https://doi.org/10.1016/j.jclepro.2017.12.064

Chen, Y., Liu, C., Chang, R., and Cao, I. and Anderson, D. (2009). Bio nanocomposites based on pea starch and cellulose Nano whiskers hydrolyzed from pea hull fibre: Effect of hydrolysis time. Carbohydrate Polymers. 76:607–615. https://doi.org/10.1016/j.carbpol.2008.11.030

Chung, Y., Ansari, S., Esteves, L., Hayrapetyan, S., Giannelis, E. and Lai, H. (2010). Preparation and properties of biodegradable starch-clay nanocomposites. Carbohydrate polymers. 79: 391-396. https://doi.org/10.1016/j.carbpol.2009.08.021

Dash, K. K., Ali, N. A., Das, D., and Mohanta, D. (2019). Thorough evaluation of sweet potato starch and lemon-waste pectin based-edible films with nano-titania inclusions for food packaging applications. International Journal of Biological Macromolecules. 139:449-458. https://doi.org/10.1016/j.ijbiomac.2019.07.193

Dehghani, S., Hosseini, S. V., and Regenstein, J. M. (2018). Edible films and coatings in seafood preservation: A review. Food Chemistry, 240:505–513. https://doi.org/10.1016/j.foodchem.2017.07.034

Domínguez, C. and Jiménez, M. (2012). Películas comestibles con polisacáridos: propiedades y aplicaciones. Temas selectos de ingeniera de alimentos. 6-2, 110-121

Flores-Martínez, N. L., Valdez-Fragoso, A., Jiménez-Islas, H. and Pérez-Pérez, M. C. (2017). Physical, barrier, mechanical amd microstructural properties of Aloe vera-gelatin-glycerol edible films incorporated with Pimenta dioica L. Merril essential oil. Revista Mexicana de Ingeniería Química. 16(1):109-119.

Hassan, B., Chatha, S. A. S., Hussain, A. I., Zia, K. M., and Akhtar, N. (2018). Recent advances on polysaccharides, lipids and protein based edible films and coatings: A review. International Journal of Biological Macromolecules, 109:1095–1107. https://doi.org/10.1016/j.ijbiomac.2017.11.097

Hashemi, S. M. B., and Mousavi Khaneghah, A. (2017). Characterization of novel basil-seed gum active edible films and coatings containing oregano essential oil. Progress in Organic Coatings. 110:35-41. https://doi.org/10.1016/j.porgcoat.2017.04.041

Hernández-Carrillo, J. G., Mújica-Paz, H., Welti-Chanes, J., Spataffora-Salazar, A. S. and Valdez-Fragoso, A. (2019). Sorption behavior of citric pectin films with glycerol and olive oil. Revista Mexicana de Ingeniería Química. 18(2):487-500. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2019v18n2/Hernandez

Huang, M., Yu, J. and Ma, X. (2006). High mechanical performance MMT-urea and formamide plasticized thermoplastic cornstarch biodegradable nanocomposites. Carbohydrate. 63:393-399. https://doi.org/10.1016/j.carbpol.2005.09.006

Jongjareonrak, A., Benjakul, S., Visessanguan, W y Tanaka, M. (2006). Effects of plasticizers on the properties of edible films from skin gelatin of bigeye snapper and brownstripe red snapper. European Food Research and Technology. 22 (3-4) (pp.229-235). https://doi.org/10.1007/s00217-005-0004-3

Liberman, E and Gilbert, S. (1973). Gas permeation of collagen films as addected by cross linkage, moisture, and plasticizer content. Journalof Polymer Science. 41, (pp. 33-43). https://doi.org/10.1002/polc.5070410106

López-Hernández, L. H., Calderón-Oliver, M., Soriano-Santos, J., Severiano-Pérez, P., Escalona-Buendía, E. and Ponce-Alquicira, E. (2018). Development and antioxidant stability of edible films supplemented with a tamarind seed extract. Revista Mexicana de Ingeniería Química. 3, 975-987. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2018v17n3/Lopez

Mali, S. Sakanaka, S. Yamashita, F. and Grossmann, E. (2005). Water Sorption and Mechanical Properties of Cassava Starch Films and Their Relation to Plasticizing Effect. (60):283-289. https://doi.org/10.1016/j.carbpol.2005.01.003

Moradi, M., Tajik, H., Rohani, S. M. R. and Mahmoudian, A. (2016) Antioxidant and antimicrobial effects of zein edible film impregnated with Zataria multiflora Boiss. essential oil and monolaurin. LWT Food Science Technology. (72) 37–43. https://doi.org/10.1016/j.lwt.2016.04.026

Müller, C. M. O., Laurindo, J. B. and Yamashita, F. (2011). Effect of nanoclay incorporation method on mechanical and water vapor barrier properties of starch-based films. Industrial Crops and Products. 33(3):605-610. https://doi.org/10.1016/j.indcrop.2010.12.021

Olivas, G. I. and Barbosa-Cánovas, G. V. (2005). Edible coatings for fresh-cut fruits. Critical reviews in food science and nutrition. 45 (7), 657-670. https://doi.org/10.1080/10408690490911837

Pajak, P., Przetaczek-Rożnowska, I., and Juszczak, L. (2019). Development and physicochemical, thermal and mechanical properties of edible films based on pumpkin, lentil and quinoa starches. International Journal of Biological Macromolecules. 138:441-449. http://doi.org/10.1016/j.ijbiomac.2019.07.074

Palma H, Salgado R, Páramo D, Vargas A y Meza M. (2017). Caracterización parcial de películas biodegradables elaboradas con almidón de plátano y proteínas séricas de la leche. Acta Universitaria, 27(1), 26-33. doi: 10.15174/au.2017.1215.

Rodríguez, E. Sandoval, A. and Fernández, A. (2007). Evaluación de la retrogradación del almidón de harina de Yuca precocida. Revista Colombiana de Química. 36 (1): 13-30 DOI: 10.15446/rev.colomb.quim

Salama, H. E., Abdel-Aziz, M. S., and Sabaa, M. W. (2019). Development of antibacterial carboxymethyl cellulose/chitosan biguanidine hydrochloride edible films activated with frankincense essential oil. International Journal of Biological Macromolecules. 139:1162-1167. doi:10.1016/j.ijbiomac.2019.08.104

Sánchez, D. Aldana, J. Contreras, C. Nevárez, G. and Aguilar, C. (2015). Caracterización de películas comestibles a base de extractos pépticos y aceite esencial de limón mexicano. CyTA. Journal of Food, 13:1, 17-25. DOI: 10.1080/19476337.2014.904929.

Šešlija, S., Nešić, A., Ružić, J., Kalagasidis Krušić, M., Veličković, S., Avolio, R. and Malinconico, M. (2018). Edible blend films of pectin and poly(ethylene glycol): Preparation and physico-chemical evaluation. Food Hydrocolloids, 77, 494–501. https://doi.org/10.1016/j.foodhyd.2017.10.027

Slavutzky, A. M., Bertuzzi, M. A. and Armada, M. (2012). Water barrier properties of starch clay nanocomposite film. Brazilean Journal of Food Technology. 15(3):208-218. http://dx.doi.org/10.1590/S1981-67232012005000014 

Srinivasa, C., Ramesh, N., Kumar, R., and Tharanathan, N. (2003). Properties and sorption studies of chitosan–polyvinyl alcohol blend films. Carbohydrate Polymers. 53(4), (pp.431-438). https://doi.org/10.1016/S0144-8617(03)00105-X

Thakur, R., Saberi, B., Pristijono, P., Golding, J., Stathopoulos, C., Scarlett, C., Bowyer-Zou, G. Song, X., Chen, F. and Shen, Z. (2017). Physical and structural characterization of edible films made with zein and corn- wheat starch. Production and hosting by Elsevier B.V.on behalf of King Saud University. https://doi.org/10.1016/j.jssas.2017.09.005

Vargas, M. Pastor, C. Chiralt, A. McClements, D. and Gonzalez, C. (2008). Recent advances in edible coatings for fresh and minimally processed fruits. Critical Reviews in Food Science & Nutrition.48 (6): 496-511. https://doi.org/10.1080/10408390701537344.

Wittaya, T. Rice starch-based biodegradable films: Properties enhancement, in: A.A. Eissa (Ed.), Structure and Function of Food Engineering, Intech Open, United Kingdom 2012, pp. 103–134, https://doi.org/10.5772/47751

Wu, M., Wang, L., Li, D., Mao, Z. and Adhikari, B. (2013). Effect of flaxseed meal on the dynamic mechanical properties of starch-based films, Journal of Food Engineering. 118:365–370, https://doi.org/10.1016/j.jfoodeng.2013.04.017.

Zheng, K., Xiao, S., Li, W., Wang, W., Chen, H., Yang, F., and Qin, C. (2019). Chitosan-acorn starch-eugenol edible film: Physico-chemical, barrier, antimicrobial, antioxidant and structural properties. International Journal of Biological Macromolecules. 135:344-352. https://doi.org/10.1016/j.ijbiomac.2019.05.151

Zuo, G., Song, X., Chen, F. and Shen, Z. (2019). Physical and structural characterization of edible bilayer films made with zein and corn-wheat starch. Journal of the Saudi Society of Agricultural Sciences. 18 (3), 324-331. https://doi.org/10.1016/j.jssas.2017.09.005
Published
2020-02-10
How to Cite
Buso-Ríos, O., Velázquez, G., Járquin-Enríquez, L., & Flores-Marínez, N. (2020). Effect of the concentration of starch and clove essential oil on the physicochemical properties of biodegradable films. Revista Mexicana De Ingeniería Química, 19(3), 1315-1326. https://doi.org/10.24275/rmiq/Alim965
Section
Food Engineering