REMOVAL OF PETROLEUM HYDROCARBONS FROM A LOW PERMEABILITY SOIL: BIOREMEDIATION AND ELECTROREMEDIATION

  • M.A. Martínez-Prado TNM-Instituto Tecnológico de Durango.
  • C.E. Soto-Álvarez TNM-Instituto Tecnológico de Durango
Keywords: bioremediation, electrokinetic unit, electroremediation, hydrocarbon contaminated soil, nutrients

Abstract

This research evaluated the combined effect of two variables: (1) the application of a low intensity current for the desorption of an organic compound present in the soil and its migration to the liquid phase (ER) and (2) the action of autochthonous microorganisms in the degradation of the organic compound (BR), in the treatment of a soil contaminated with hydrocarbons in an experimental unit with recirculation. An electrokinetic unit was built which included a pair of stainless steel electrodes (anode and cathode) to apply a low potential gradient, MSS was used as source of nutrients and mixed to ensure aerobic conditions. Two indigenous microorganisms were isolated from the contaminated soil (Aspergillus sp and Flavobacterium sp), selected because of their high diesel degradation potential and used in batch reactor bioremediation tests. It was demonstrated that electric current applied, addition of nutrients, and oxygen accelerated the microbial growth of native microorganisms in EBR experiments (6.13 ± 1.22 ×1013 CFU/mL) and were higher than in BR tests (4.57 ± 0.80 ×1013 CFU/mL); and a higher hydrocarbons removal efficiency (EBR: 86.67 ± 2.23% vs BR: 73.18 ± 3.16%), after 190 hours of treatmen

References

ATSDR (2017). Agency for Toxic Substances and Disease Registry. Toxicological Profile for Total Petroleum Hydrocarbons TPH. Disponible en: https://www.atsdr.cdc.gov/toxprofiles/tp123.pdf. Accesado: 12 de febrero de 2017.

Acar, Y.B., Gale, R.J., Alshawabkeh, A.N., Marks, R.E., Puppala, S., Bricka, M., and Parker, R. (1995). Electrokinetic remediation: basics and technology status. Journal of Hazardous Materials 40, 117-137. https://doi.org/10.1016/0304-3894(94)00066-P

Arrieta-Ram´ırez, O.M., Rivera-Rivera, A.P., AriasMarin, L., Rojano, B.A., Ruiz, O. y CardonaGallo, S.A. (2012). Biorremediacion de un suelo con diesel mediante el uso de microorganismos autóctonos. Revista Gesti´on y Ambiente 15, 27- 40. http://www.revistas.unal.edu.co/index.php/ gestion/article/view/30815

Cisneros-de La Cueva, S., Mart´ınez-Prado, M.A., Rojas-Contreras, J.A., Medrano-Roldan,H., and Murillo-Mart´ınez, M.A. (2014). Isolation and characterization of a novel strain, Bacillus sp KJ629314, with a high potential to aerobically degrade diesel. Revista Mexicana de Ingenier´ıa Qu´ımica 13, 393-403. http://www.scielo.org.mx/pdf/rmiq/v13n2/ v13n2a6.pdf

Cisneros-de la Cueva, S. Mart´ınez-Prado, M.A., López-Miranda, J., Rojas-Contreras, J.A., and Medrano-Roldan, H. (2016). Aerobic degradation of diesel by Aspergillus terreus KP862582. Revista Mexicana de Ingenier´ıa Qu´ımica 15, 347-360. http://www.redalyc.org/pdf/620/62046829005.pdf

De la Rosa-Perez, D.A., Teutli-León, M.M.M. y Ram´ırez-Islas, M.E. (2007). Electrorremediación de suelos contaminados, una revisión técnica para su aplicación en campo. Revista Internacional de Contaminaci´on Ambiental 23, 129-138. http://www.scielo.org.mx/pdf/rica/ v23n3/v23n3a3.pdf

Gómes, H.I., Dias-Ferreira, C., and Ribeiro, A.B. (2012). Electrokinetic remediation of organochlorines in soil: enhancement techniques and integration with other remediation technologies. Chemosphere 87, 1077-1090. http://www.nanodc.org/publications/ 2012-03%20EK%20review Chemosphere.pdf

Guo, S., Fan, R., Li, T., Hartog, N., Li, F., and Yang, X. (2014). Synergistic effects of bioremediation and electrokinetics in the remediation of petroleum-contaminated soil. Chemosphere 109, 226-233. http://doi.org/10.1016/ j.chemosphere.2014.02.007

Huang, D.N., Guo, S.H., Li, T.T., and Wu, B. (2013). Coupling interactions between electrokinetics and bioremediation for pyrene removal from soil under polarity reversal conditions. Clean-Soil, Air, Water 41, 383-389. http://onlinelibrary.wiley.com/doi/10.1002/ clen.201200079/pdf

Jackman, S.A., Maini, G., Sharman, A.K., Sunderland, G., and Knowles, C.J. (2001). Electrokinetic movement and biodegradation of 2,4-dichlorophenoxyacetic acid in silt soil. Biotechnology and Bioengineering 74, 40-48. http://onlinelibrary.wiley.com/doi/10.1002/ bit.1093/full.

Jin, S. and Fallgren, P.H. (2010). Electrically induced reduction of trichloroethene in clay.Journal of Hazardous Materials 173, 200-204.http://doi.org/10.1016/j.jhazmat.2009.08.069

Kim, S.J., Park, J.Y., Lee, Y.J., Lee, J.Y., and Yang, J.W. (2005). Application of a new electrolyte circulation method for the ex situ electrokinetic bioremediation of a laboratoryprepared pentadecane contaminated kaolinite. Journal of Hazardous Materials 118, 171-176. http://doi.org/10.1016/j.jhazmat.2004.10.016

Lear, G., Harbottle, M.J., Van der Gast, C.J., Jackman, S.A., Knowles, C.J., Sills, G., and Thompson, I.P. (2004). The effect of electrokinetics on soil microbial communities. Soil Biology and Biochemistry 36, 1751-1760. http://doi.org/10.1016/j.soilbio.2004.04.032

Li, T., Guo, S., Wu, B., Li, F., and Niu, Z. (2010). Effect of electric intensity on the microbial degradation of petroleum pollutants in soil. Journal of Environmental Sciences 22, 1381-1386. https://doi.org/10.1016/S1001-0742(09)60265-5

Li, F., Guo, S., and Hartog, N. (2012). Electrokinetics-enhanced biodegradation of heavy polycyclic aromatic hydrocarbons in soil around iron and steel industries. Electrochimica Acta 85, 228-234. http://www.sciencedirect.com/ science/article/pii/S001346861201345X

Luo, Y. and Zhou, Z. (2006). Soil Respiration and the Environment. Academic Press. Elsevier. Inc. California, USA. 333. http://www.agrifs.ir/sites/default/files/Soil %20 Respiration %20 and% 20 the% 20 Environment %20%7BLuo%20Yiqi%7D%20%5B9780120 887828%5D%20(Academic%20Press%20-%202006) 0.pdf

Lynch, R.J., Muntoni, A., Ruggeri, R., and Winfield, K.C. (2007). Preliminary tests of an electrokinetic barrier to prevent heavy metal pollution of soils. Electrochimica Acta 52, 3432-3440. http://www.sciencedirect.com/science/article/pii/ S0013468606010139

Mart´ınez-Prado, M.A. and Williamson, K.J. (2011). Biodegradation of methyl tert-butyl ether (MTBE) and its breakdown products by propane and iso-pentane grown Mycobacterium vaccae and Graphium sp: Cometabolism, inhibition, kinetics and modeling. Vol 1, First Edition. Lap Lambert Academic Publishing Gmbh & Co. Kg. https://www.amazon.com/BiodegradationMTBE-Mycobacterium-vaccae-Graphium/dp/
3846522732

Mart´ınez-Prado, M.A., Perez-López, M.E., Pinto-Espinoza, J., Gurrola-Nevarez, B.A., y Osorio- Rodr´ıguez, A.L. (2011). Biorremediación de suelo contaminado con hidrocarburos empleando lodos residuales como fuente alterna de nutrientes. Revista Internacional de Contaminación Ambiental 27, 241-252. http://www.redalyc.org/html/370/37020226009/

Mart´ınez-Prado, M.A., Unzueta-Medina, J., and Perez-López, M.E. (2014). Electrobioremediation as a hybrid technology to treat soil contaminated with total petroleum hydrocarbons. Revista Mexicana de Ingenier´ıa Qu´ımica 13, 113-127. http://www.redalyc.org/articulo.oa?id=62031 166010

Mart´ınez-Trujillo, M.A. y Garc´ıa-Rivero, M. (2012). Revision: Aplicaciones ambientales de microorganismos inmovilizados. Revista Mexicana de Ingenier´ıa Qu´ımica 11, 55-73. http://www.redalyc.org/pdf/620/62024415005. pdf

Pern´ıa, B., Demey, J.R., Inojosa, Y. y NaranjoBriceno, L. (2012). Biodiversidad y potencial hidrocarbonoclastico de hongos aislados de crudo y sus derivados: Un meta-análisis. Revista Latinoamericana de Biotecnolog´ıa Ambiental Algal 3, 1-39. http://www.ambientalex.info/revistas/vol3n11.pdf

Rahner, D., Ludwig, G., and Rohrs, J. (2002). Electrochemically induced reactions in soilsma new approach to the in-situ remediation of contaminated soils? Part 1: The microconductor principle. Electrochimica Acta 47, 1395-1403. http://www.sciencedirect.com/science/article/pii/ S0013468601008544

Reddy, K.R., Ala P.R., Sharma, S., and Kumar, S.N. (2006). Enhanced electrokinetic remediation of contaminated maufactured gas plant soil. Engineering Geology 85, 132-146. http://www.sciencedirect.com/science/article/pii/S0013795206000755

Riojas-Gonzalez, H.H., Torres-Bustillos, L.G., Mondaca-Fernandez, I., Balderas-Cortes, J.J. y Gortares-Moroyoqui, P. (2010). Efectos de los surfactantes en la biorremediació n de suelos contaminados con hidrocarburos. Revista Qu´ımica Viva 9, 120-145.

Salinas-Mart´ınez, A., Santos-Cordova, M., Soto-Cruz, O., Delgado, E., Perez-Andrade, H., Hauad-Marroquin, L.A., and Medrano-Roldan, H. (2008). Development of a bioremediation process by biostimulation of native microbial consortium through the heap leaching technique. Journal of Environmental Management 88, 115-119. http://www.sciencedirect.com/science/article/ pii/S0301479707000679

SEMARNAT (2012). Secretar´ıa de Medio Ambiente y Recursos Naturales. Norma Oficial Mexicana:

NOM-138-SEMARNAT/SSA1-2012. L´ımites máximos permisibles de hidrocarburos en suelos y las especificaciones para su caracterización y remediación. Disponible en: http://www.dof.gob.mx/nota detalle.php? codigo=5313544&fecha=10/09/2013. Accesado: 22 de marzo de 2017.

SGM (2016). Servicio Geologico Mexicano. Panorama Minero del estado de Durango. Gobierno Federal. Disponible en: http://www. sgm.gob.mx/pdfs/DURANGO.pdf. Accesado: 20 de febrero de 2017.

Shi, L., Muller, S., Lo ¨ ffhagen, N., Harms, H., and Wick, L.Y. (2008). Activity and viability of polycyclic aromatic hydrocarbondegrading Sphingomonas sp. LB126 in a DC electrical field typical for electrobioremediation
Published
2019-11-13
How to Cite
Martínez-Prado, M., & Soto-Álvarez, C. (2019). REMOVAL OF PETROLEUM HYDROCARBONS FROM A LOW PERMEABILITY SOIL: BIOREMEDIATION AND ELECTROREMEDIATION. Revista Mexicana De Ingeniería Química, 16(3), 955-970. Retrieved from http://rmiq.org/ojs311/index.php/rmiq/article/view/989
Section
Environmental Engineering