Erosion behavior of 440C stainless steel cryogenically treated

  • J. Ibarra
  • E. Rodríguez
  • M. A. González
  • S. López Cuenca
  • A. Medina
  • G. I. Vásquez
Keywords: 440C stainless steel, erosion, Silica sand SiO2, Impact angle, behavior brittle

Abstract

The quality of most of metallic products depends on its superficial condition and how it deteriorates in operation; mostly the type of deterioration phenomena is the principal factor which affects life time and operation performance of machines components. The erosion is one of the most deteriorating factors which metals are exposed to. In the present work, erosion by solid particle tests of martensitic 440C stainless steel were realized. Silica sand (SiO2) was used as erodent at four impact angles and four impact speed of the particles. Graphs of erosion show a brittle behavior tendency. The erosion marks were mapped by 3D profilometry, showing that there is no correspondence between the angle of maximum mass loss and the angle at which maximum penetration marks were observed at 5 and 10 psi. Scanning electron microscopy was used to determine the erosion mechanisms for each impact angle test. These results are compared to similar studies in which some behavior differences are reported.

References

Adler, T. A., Rawers, J. C., Tylczak, J. H. and Hawk. J. A. (2001). Erosive wear of selected materials for fossil energy applications. Conference. December. Knoxville, Tennessee: The Fifteenth Annual Conference on Fossil Energy Materials.

Aguinaco-Bravo, V. J. y Oroño J. (1999). Las partículas elementales básicas como nucleantes de la martensita. Revista de Metalutgia 35, 11-16.

Akbarzadeh, E., Elsaadawy, E., Sherik, A. M., Spelt, J. K. and Papini, M. (2012). The Solid Particle Erosion of 12 Metals Using Magnetite Erodent. Wear 282–283: 40–51. http://dx.doi.org/10.1016/j.wear.2012.01.021.

Arabnejad, H., Shirazi, S.A., McLaury, B.S., Subramani, H.J. and Rhyne, L. D. (2015). The Effect of Erodent Particle Hardness on the Erosion of Stainless Steel. Wear 332–333, 1098–1103. https://doi.org/10.1016/j.wear.2015.01.017

ASM Handbook, Volume 1,(1990). Properties and Selection: Irons, Steels, and High Performance Alloys. Materials Park, OH, ASM International.

ASM Handbook, Volume 4,(1991). Heat Treating. Materials Park, OH, ASM International.

ASTM Standard, G76-13. (2013). Standard Practice for Conducting Erosion Tests by Solid Particle Impingement Using Gas Jets. International, Contact Astm, and Standard Test Method. 2000.

Bousser, E., Martinu, L. and Klemberg-Sapieha, J. E. (2013). Effect of Erodent Properties on the Solid Particle Erosion Mechanisms of Brittle Materials. Journal of Materials Science 48, 5543–58.

Cerdá, A., Rodrigo-Comino, J., Giménez-Morera, A., Keesstra, S.D. (2018). Hydrological and erosional impact and farmer’s perception on catch crops and weeds in citrus organic farming in Canyoles river watershed, Eastern Spain. Agriculture, Ecosystems and Environment 258, 49–58. https://doi.org/10.1016/j.agee.2018.02.015


Cuevas-Arteaga, C., Clemente, C. M. and Rodríguez. J. A. (2019). Crevices Corrosion in Cracks of AISI-410 Used in Steam Turbines Blades. Revista Mexicana de Ingeniera Quimica 18, 13-26. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2019v18n1/Cuevas

Das, S., Mondal, D. P. and Sawla. S. (2004). Solid Particle Erosion of Al Alloy and Al-Alloy Composites: Effect of Heat Treatment and Angle of Impingement. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 35, 1369–79. https://doi.org/10.1007/s11661-004-0312-4

Deng, T., Bingley, M. S. and Bradley, M. S. A. (2004). The Influence of Particle Rotation on the Solid Particle Erosion Rate of Metals. Wear 256, 1037–49. https://doi.org/10.1016/S0043-1648(03)00536-2

Feizi, Z., Ayoubi, S., Reza Mosaddeghi, M., Asghar Besalatpour, A., Zeraatpisheh, M., Rodrigo-Comino, J. (2018). A wind tunnel experiment to investigate the effect of polyvinyl acetate, biochar, and bentonite on wind erosion control. Archives of agronomy and soil science, 65, 1049-1062. https://doi.org/10.1080/03650340.2018.1548765

Feng, Z. and Ball, A. (1999). The Erosion of Four Materials Using Seven Erodents - towards an Understanding. Wear 233–235, 674–84. https://doi.org/10.1016/S0043-1648(99)00176-3

Finnie, I. (1995). Some Reflections on the Past and Future of Erosion. Wear 186–187(PART 1),1–10. https://doi.org/10.1016/0043-1648(95)07188-1

Harsha, A. P., and Deepak Kumar Bhaskar. (2008). Solid Particle Erosion Behaviour of Ferrous and Non-Ferrous Materials and Correlation of Erosion Data with Erosion Models. Materials and Design 29, 1745–1754. https://doi.org/10.1016/j.matdes.2008.03.016

Hutchings I.M. (2003). Tribology, Friction and Wear Engineering Materials. First edición, USA: Elsevier Butterworth-Heinemann.

Keesstra, S. D., Rodrigo-Comino, J., Novara, A., Giménez-Morera, A., Pulido, M., Di Prima, S., Cerda, A. (2019). Straw mulch as a sustainable solution to decrease runoff and erosion in glyphosate-treated clementine plantations in Eastern Spain. An assessment using rainfall simulation experiments. Catena 174, 95-103. https://doi.org/10.1016/j.catena.2018.11.007

Kim, J. J., and Park, S. K. (1998). Solid Particle Erosion of AlSl 403 Stainless Steel. Journal of Materials Science Letters 17, 1503–1506. https://doi.org/10.1023/A:1026403208291

Laguna-Camacho, J. R., Cruz-Mendoza, L. A., Anzelmetti-Zaragoza, J. C., Marquina-Chávez, A., Vite-Torres, M. and Martínez-Trinidad, J (2013). Solid Particle Erosion on Coatings Employed to Protect Die Casting Molds. Progress in Organic Coatings 74, 750–57. http://dx.doi.org/10.1016/j.porgcoat.2011.09.022.

Laguna-Camacho, J. R., Hernández-Romero, I., Escalante-Martínez, J. E., Márquez-Vera, C. A., Galván-López, J. L., Méndez-Méndez, J. V., Arzate-Vázquez, I. and Andraca-Adame, J. A. (2015). Erosion Wear of AISI 420 Stainless Steel Caused by Walnut Shell Particles. Transactions of the Indian Institute of Metals 68, 633–647. https://doi.org/10.1007/s12666-014-0493-5

Lopez-Martínez, E., Hernandez-Morales, J.B., Solorio-Díaz, G., Vergara-Hernandez, H.J., Vazquez-Gómez, O. y Garnica-González, P. (2013). Predicción del perfil de dureza en probetas Jominy de aceros de medio y bajo carbono. Revista Mexicana de Ingeniería Química 12, 609 - 619.

Macchini, R.,. Bradley, M. S.A and Deng, T. (2013). Influence of Particle Size, Density, Particle Concentration on Bend Erosive Wear in Pneumatic Conveyors. Wear 303, 21–29. http://dx.doi.org/10.1016/j.wear.2013.02.014.

McDonald, L. G., and Kelley, J. E. (1994). Erosive Wear of Potential Valve Materials for Coal-Conversion Plants. U.S. Department of the Interior, Bureau of Mines, Report of Investigations No. 9490.

Murugesh, L., and R. O. Scattergood. (1991). Effect of Erodent Properties on the Erosion of Alumina. Journal of Materials Science 26, 5456–66. https://doi.org/10.1007/BF02403943

Naveed, M., Schlag, H., König, F. and Weiß, S. (2016). Influence of the Erodent Shape on the Erosion Behavior of Ductile and Brittle Materials. Tribology Letters 65: 1–9. https://doi.org/10.1007/s11249-016-0800-x

Nguyen, Q. B., Nguyenb, V.B., Lim, C. Y. H., Trinh, Q.T., Sankaranarayanan, S., Zhang, Y.W. and Guptaa, M. (2014). Effect of Impact Angle and Testing Time on Erosion of Stainless Steel at Higher Velocities. Wear 321: 87–93. https://doi.org/10.1016/j.wear.2014.10.010

Nguyen, V. B., Nguyen, Q. B., Lim, C. Y. H., Zhang, Y. W. y Khoo B.C. (2015). Effect of Air-Borne Particle-Particle Interaction on Materials Erosion. Wear 322–323, 17–31. http://dx.doi.org/10.1016/j.wear.2014.10.014.

Nguyen, V. B., Nguyen, Q. B., Zhang, Y. W., Lim, C.Y.H. and Khoo, B.C. (2016). Effect of Particle Size on Erosion Characteristics. Wear 348–349: 126–37. http://dx.doi.org/10.1016/j.wear.2015.12.003.

Rateick Jr., R.G., Karasek, K.R., Cunningham, A.J., Goretta, K.C. and Routbort, J.L. (2006). Solid-Particle Erosion of Tungsten Carbide/Cobalt Cermet and Hardened 440C Stainless Steel-A Comparison. Wear 261, 773–778. https://doi.org/10.1016/j.wear.2006.01.012

Rodríguez, C., and Biezma, M. V. (2014). Detección de La Corrosión Por Picadura En Aceros Inoxidables Empleando Ultrasonidos. Revista de Metalurgia 50, 1–11. http://dx.doi.org/10.3989/revmetalm.005

Rodríguez, E., Flores, M., Pérez, A, Mercado-Solis, R.D., González, R., Rodríguez, J. and Valtierra, S. (2009). Erosive Wear by Silica Sand on AISI H13 and 4140 Steels. Wear 267, 2109–2115. https://doi.org/10.1016/j.wear.2009.08.009

Rodríguez, J., Martinez, D., Perez, A., González, R., Rodríguez, E. and Valtierra, S. (2007). Erosion Wear in Heat Treated Tool Steels Used in Core Boxes at Automotive Foundries. Wear 263, 301–308. https://doi.org/10.1016/j.wear.2006.12.051

Stachowiack., G.W., Batchelor., A.W. (2005). Engineering tribology. Elsevier Butterworth-Heinemann, ISBN: 9780123977762.

Shimizu, A., Xinba, Y., Ishida, M. and Kato, T. (2011). High temperature erosion characteristics of surface treated SUS410 stainless steel. Wear 271, 1349 - 1356. https://doi.org/10.1016/j.wear.2011.01.055

Smith W. F. (1996). Principles of Materials Science and Engineering. Editorial Mcgraw Hill, U.S.A.

Stevenson, A. N. J., Hutchings, I. M. (1995). Scaling laws for particle velocity in the gas-blast erosion test. Wear 181, 56 - 62. https://doi.org/10.1016/0043-1648(95)90008-X

Sundararajan, G. (1995). The Solid Particle Erosion of Metallic Materials: The Rationalization of the Influence of Material Variables. Wear 186–187(PART 1): 129–144.

Venugopal Reddy, A. and Sundararajan, G. (1991). The Influence of Grain Size on the Erosion Rate of Metals. Metallurgical Transactions A 18, 1043–1052. https://doi.org/10.1007/BF03325714

Vite-Torres, M., Laguna-Camacho, J. R., Baldenebro-Castillo, R. E., Gallardo-Hernández E. A., Vera-Cárdenas, E. E., Vite-Torres, J. (2013). Study of Solid Particle Erosion on AISI 420 Stainless Steel Using Angular Silicon Carbide and Steel Round Grit Particles. Wear 301, 383–89. https://doi.org/10.1016/j.wear.2013.01.071

Yabuki, A., Matsuwaki, K. and Matsumura. M.(1999). Critical Impact Velocity in the Solid Particles Impact Erosion of Metallic Materials. Wear 233–235, 468–75. https://doi.org/10.1016/S0043-1648(99)00170-2
Published
2020-01-21
How to Cite
Ibarra, J., Rodríguez, E., González, M., López Cuenca, S., Medina, A., & Vásquez, G. (2020). Erosion behavior of 440C stainless steel cryogenically treated. Revista Mexicana De Ingeniería Química, 19(3), 1255-1264. https://doi.org/10.24275/rmiq/Mat991