Vol. 23, No. 3 (2024), Alim24299 https://doi.org/10.24275/rmiq/Alim24299


Beetroot slices dried by refractance window dryer and conventional drying: drying kinetics, physicochemical properties and antioxidant capacity


 

Authors

E. Herman-Lara, C. E. Martínez-Sánchez, J. Rodríguez-Miranda, J. M. Juárez-Barrientos, C. Calderón-Chiu


Abstract

This investigation evaluated the effect of drying methods, including tray drying (TD), fixed bed drying (FBD), and refractive window drying (RWD) of beetroot slices (1 mm thickness) at 60, 75, and 85 °C. Then, drying kinetics, color, texture, total polyphenol content (TPC), total flavonoid content (TFC), and antioxidant capacity (AC) were assessed. The moisture ratio and drying rate depended on temperature and method of drying. Beetroot slices processed on RWD showed lower moisture content and the highest drying rate than TD and FBD. For this reason, RWD required less time drying (60-100 min) in comparison to TD (100-150 min) and FBD (240-285 min) at temperatures evaluated. The color and firmness of dried beetroot slices by RWD were more similar to the control (fresh beetroot) than other drying methods. Similarly, the TPC, TFC, and AC were higher at low drying temperatures (60 °C) for the three methods evaluated. However, as the temperature increased, TPC, TFC, and AC were significantly reduced (P<0.05) for samples processed on TD and FBD. This study showed that RWD could effectively be used to dry thin layers of heat-sensitive products such as beetroot in a shorter time with minimum alteration in quality compared to conventional drying methods.


Keywords

beetroot, refractance window dryer, tray dryer, fixed bed dryer, physical properties, chemical properties.


References

  • Alañón, M. E., Alarcón, M., Marchante, L., Díaz-Maroto, M. C., & Pérez-Coello, M. S. (2017). Extraction of natural flavorings with antioxidant capacity from cooperage by-products by green extraction procedure with subcritical fluids. Industrial Crops and Products, 103, 222–232. https://doi.org/10.1016/j.indcrop.2017.03.050
  • AOAC. (2005). Official Methods of Analysis of AOAC International. In Association of Official Analysis Chemists International.
  • Azizi, D., Jafari, S. M., Mirzaei, H., & Dehnad, D. (2017). The influence of refractance window drying on qualitative properties of kiwifruit slices. International Journal of Food Engineering, 13(2). https://doi.org/10.1515/ijfe-2016-0201
  • Calderón-Chiu, C., Martínez-Sánchez, C. E., Rodríguez-Miranda, J., Juárez-Barrientos, J. M., Carmona-García, R., & Herman-Lara, E. (2020). Evaluation of the combined effect of osmotic and Refractance Window drying on the drying kinetics, physical, and phytochemical properties of beet. Drying Technology, 38(12), 1663–1675. https://doi.org/10.1080/07373937.2019.1655439
  • Calín-Sánchez, Á., Lipan, L., Cano-Lamadrid, M., Kharaghani, A., Masztalerz, K., Carbonell-Barrachina, Á. A., & Figiel, A. (2020). Comparison of traditional and novel drying techniques and its effect on quality of fruits, vegetables and aromatic herbs. Foods, 9(9), 1261. https://doi.org/10.3390/foods9091261
  • Caparino, O. A., Tang, J., Nindo, C. I., Sablani, S. S., Powers, J. R., & Fellman, J. K. (2012). Effect of drying methods on the physical properties and microstructures of mango (Philippine ‘Carabao’ var.) powder. Journal of Food Engineering, 111(1), 135–148. https://doi.org/10.1016/j.jfoodeng.2012.01.010
  • Celli, G. B., Khattab, R., Ghanem, A., & Brooks, M. S.-L. (2016). Refractance WindowTM drying of haskap berry – Preliminary results on anthocyanin retention and physicochemical properties. Food Chemistry, 194, 218–221. https://doi.org/10.1016/j.foodchem.2015.08.012
  • Chhikara, N., Kushwaha, K., Sharma, P., Gat, Y., & Panghal, A. (2019). Bioactive compounds of beetroot and utilization in food processing industry: A critical review. In Food Chemistry. https://doi.org/10.1016/j.foodchem.2018.08.022
  • Dadhaneeya, H., Nayak, P. K., Saikia, D., Kondareddy, R., Ray, S., & Kesavan, R. krishnan. (2023). The impact of refractance window drying on the physicochemical properties and bioactive compounds of malbhog banana slice and pulp. Applied Food Research, 3(1), 100279. https://doi.org/10.1016/j.afres.2023.100279
  • El Broudi, S., Zehhar, N., Abdenouri, N., Boussaid, A., Hafidi, A., & Benkhalti, F. (2022). Investigation of drying kinetics and drying conditions on biochemical, sensory, and microstructural parameters of “Sefri” pomegranate arils (Punica granatum L. a Moroccan variety). Revista Mexicana de Ingeniería Química, 21(3), 1–25. https://doi.org/10.24275/rmiq/Alim2813
  • ElGamal, R., Song, C., Rayan, A. M., Liu, C., Al-Rejaie, S., & ElMasry, G. (2023). Thermal degradation of bioactive compounds during drying process of horticultural and agronomic products: A comprehensive overview. Agronomy, 13(6), 1580. https://doi.org/10.3390/agronomy13061580
  • Figiel, A. (2010). Drying kinetics and quality of beetroots dehydrated by combination of convective and vacuum-microwave methods. Journal of Food Engineering, 98(4), 461–470. https://doi.org/10.1016/j.jfoodeng.2010.01.029
  • Franco, S., Jaques, A., Pinto, M., Fardella, M., Valencia, P., Núñez, H., Ramírez, C., & Simpson, R. (2019). Dehydration of salmon (Atlantic salmon), beef, and apple (Granny Smith) using Refractance windowTM: Effect on diffusion behavior, texture, and color changes. Innovative Food Science & Emerging Technologies, 52, 8–16. https://doi.org/10.1016/j.ifset.2018.12.001
  • García-Moreira, D. P., Moreno, I., Irigoyen-Campuzano, J. R., Martín-Domínguez, I., García-Valladares, O., & López-Vidaña, E. C. (2024). Effect of convective drying on color, water activity, and browning index of peach slices. Revista Mexicana de Ingeniería Química, 23(1), 1–18. https://doi.org/10.24275/rmiq/Alim24188
  • Gokhale, S. V., & Lele, S. S. (2011). Dehydration of red beet root (Beta vulgaris) by hot air drying: Process optimization and mathematical modeling. Food Science and Biotechnology, 20(4), 955–964. https://doi.org/10.1007/s10068-011-0132-4
  • Gong, X., Huang, X., Yang, T., Wen, J., Zhou, W., & Li, J. (2019). Effect of drying methods on physicochemical properties and antioxidant activities of okra pods. Journal of Food Processing and Preservation, 43(12). https://doi.org/10.1111/jfpp.14277
  • Hamid, M. G., & Mohamed, N. A. A. A. (2018). Effect of different drying methods on quality attributes of beetroot ( Beta vulgaris ) slices. World Journal of Science, Technology and Sustainable Development, 15(3), 287–298. https://doi.org/10.1108/WJSTSD-11-2017-0043
  • Hernández-Santos, B., Martínez-Sánchez, C. E., Torruco-Uco, J. G., Rodríguez-Miranda, J., Ruiz-López, I. I., Vajando-Anaya, E. S., Carmona-García, R., & Herman-Lara, E. (2016). Evaluation of physical and chemical properties of carrots dried by Refractance Window drying. Drying Technology. https://doi.org/10.1080/07373937.2015.1118705
  • Hossain, M. B., Barry-Ryan, C., Martin-Diana, A. B., & Brunton, N. P. (2010). Effect of drying method on the antioxidant capacity of six Lamiaceae herbs. Food Chemistry, 123(1), 85–91. https://doi.org/10.1016/j.foodchem.2010.04.003
  • Hu, D., Liu, X., Qin, Y., Yan, J., Li, R., & Yang, Q. (2023). The impact of different drying methods on the physical properties, bioactive components, antioxidant capacity, volatile components and industrial application of coffee peel. Food Chemistry: X, 19, 100807. https://doi.org/10.1016/j.fochx.2023.100807
  • Janiszewska, E. (2014). Microencapsulated beetroot juice as a potential source of betalain. Powder Technology, 264, 190–196. https://doi.org/10.1016/j.powtec.2014.05.032
  • Jia, Y., Khalifa, I., Hu, L., Zhu, W., Li, J., Li, K., & Li, C. (2019). Influence of three different drying techniques on persimmon chips’ characteristics: A comparison study among hot-air, combined hot-air-microwave, and vacuum-freeze drying techniques. Food and Bioproducts Processing, 118, 67–76. https://doi.org/10.1016/j.fbp.2019.08.018
  • Jiratanan, T., & Liu, R. H. (2004). Antioxidant activity of processed table beets (Beta vulgaris var, conditiva) and green beans (Phaseolus vulgaris L.). Journal of Agricultural and Food Chemistry, 52(9), 2659–2670. https://doi.org/10.1021/jf034861d
  • Karam, M. C., Petit, J., Zimmer, D., Baudelaire Djantou, E., & Scher, J. (2016). Effects of drying and grinding in production of fruit and vegetable powders: A review. In Journal of Food Engineering. https://doi.org/10.1016/j.jfoodeng.2016.05.001
  • Kumar, M., Madhumita, M., Prabhakar, P. K., & Basu, S. (2022). Refractance window drying of food and biological materials: Status on mechanisms, diffusion modelling and hybrid drying approach. Critical Reviews in Food Science and Nutrition, 1–24. https://doi.org/10.1080/10408398.2022.2132210
  • Li, H., Xie, L., Ma, Y., Zhang, M., Zhao, Y., & Zhao, X. (2019). Effects of drying methods on drying characteristics, physicochemical properties and antioxidant capacity of okra. LWT, 101, 630–638. https://doi.org/10.1016/j.lwt.2018.11.076
  • Mahanti, N. K., Chakraborty, S. K., Sudhakar, A., Verma, D. K., Shankar, S., Thakur, M., Singh, S., Tripathy, S., Gupta, A. K., & Srivastav, P. P. (2021). Refractance WindowTM-Drying vs. other drying methods and effect of different process parameters on quality of foods: A comprehensive review of trends and technological developments. Future Foods, 3, 100024. https://doi.org/10.1016/j.fufo.2021.100024
  • Mandale, N. M., Attkan, A. K., Kumar, S., & Kumar, N. (2023). Drying kinetics and quality assessment of refractance window dried beetroot. Journal of Food Process Engineering, 46(7). https://doi.org/10.1111/jfpe.14332
  • Menon, A., Stojceska, V., & Tassou, S. A. (2020). A systematic review on the recent advances of the energy efficiency improvements in non-conventional food drying technologies. Trends in Food Science & Technology, 100, 67–76. https://doi.org/10.1016/j.tifs.2020.03.014
  • Nguyen, V. T., Van Vuong, Q., Bowyer, M. C., Van Altena, I. A., & Scarlett, C. J. (2015). Effects of different drying methods on bioactive compound yield and antioxidant capacity of Phyllanthus amarus. Drying Technology, 33(8), 1006–1017. https://doi.org/10.1080/07373937.2015.1013197
  • Ochoa-Martínez, C. I., Quintero, P. T., Ayala, A. A., & Ortiz, M. J. (2012). Drying characteristics of mango slices using the Refractance WindowTM technique. Journal of Food Engineering, 109(1), 69–75. https://doi.org/10.1016/j.jfoodeng.2011.09.032
  • Ortiz-Jerez, M. J., Gulati, T., Datta, A. K., & Ochoa-Martínez, C. I. (2015). Quantitative understanding of Refractance WindowTM drying. Food and Bioproducts Processing. https://doi.org/10.1016/j.fbp.2015.05.010
  • Pinela, J., Barros, L., Dueñas, M., Carvalho, A. M., Santos-Buelga, C., & Ferreira, I. C. F. R. (2012). Antioxidant activity, ascorbic acid, phenolic compounds and sugars of wild and commercial Tuberaria lignosa samples: Effects of drying and oral preparation methods. Food Chemistry, 135(3), 1028–1035. https://doi.org/10.1016/j.foodchem.2012.05.038
  • Preethi, R., Deotale, S. M., Moses, J. A., & Anandharamakrishnan, C. (2020). Conductive hydro drying of beetroot (Beta vulgaris L.) pulp: Insights for natural food colorant applications. Journal of Food Process Engineering, 43(12). https://doi.org/10.1111/jfpe.13557
  • Raghavi, L. M., Moses, J. A., & Anandharamakrishnan, C. (2018). Refractance window drying of foods: A review. Journal of Food Engineering. https://doi.org/10.1016/j.jfoodeng.2017.11.032
  • Rajoriya, D., Shewale, S. R., & Hebbar, H. U. (2019). Refractance window drying of apple slices: Mass transfer phenomena and quality parameters. Food and Bioprocess Technology, 12(10), 1646–1658. https://doi.org/10.1007/s11947-019-02334-7
  • Rehman, S., Mufti, I. U., Ain, Q. U., & Ijaz, B. (2024). Bioactive Compounds and Biological Activities of Red Beetroot (Beta vulgaris L.) (pp. 1–31). https://doi.org/10.1007/978-3-031-29006-0_42-1
  • Rodríguez, J., Mulet, A., & Bon, J. (2014). Influence of high-intensity ultrasound on drying kinetics in fixed beds of high porosity. Journal of Food Engineering, 127, 93–102. https://doi.org/10.1016/j.jfoodeng.2013.12.002
  • Roshanak, S., Rahimmalek, M., & Goli, S. A. H. (2016). Evaluation of seven different drying treatments in respect to total flavonoid, phenolic, vitamin C content, chlorophyll, antioxidant activity and color of green tea (Camellia sinensis or C. assamica) leaves. Journal of Food Science and Technology, 53(1), 721–729. https://doi.org/10.1007/s13197-015-2030-x
  • Ruiz-López, I. I., Martínez-Sánchez, C. E., Cobos-Vivaldo, R., & Herman-Lara, E. (2008). Mathematical modeling and simulation of batch drying of foods in fixed beds with airflow reversal. Journal of Food Engineering, 89(3), 310–318. https://doi.org/10.1016/j.jfoodeng.2008.05.009
  • Sadowska-Bartosz, I., & Bartosz, G. (2021). Biological properties and applications of betalains. Molecules, 26(9), 2520. https://doi.org/10.3390/molecules26092520
  • Santos, S. de J. L., Canto, H. K. F., da Silva, L. H. M., & Rodrigues, A. M. da C. (2022). Characterization and properties of purple yam ( Dioscorea trifida ) powder obtained by refractance window drying. Drying Technology, 40(6), 1103–1113. https://doi.org/10.1080/07373937.2020.1847140
  • Seremet, L., Nistor, O.-V., Andronoiu, D. G., Mocanu, G. D., Barbu, V. V., Maidan, A., Rudi, L., & Botez, E. (2020). Development of several hybrid drying methods used to obtain red beetroot powder. Food Chemistry, 310, 125637. https://doi.org/10.1016/j.foodchem.2019.125637
  • Tontul, İ., Kasimoglu, Z., Asik, S., Atbakan, T., & Topuz, A. (2018). Functional properties of chickpea protein isolates dried by refractance window drying. International Journal of Biological Macromolecules. https://doi.org/10.1016/j.ijbiomac.2017.11.135
  • Wang, J., Law, C.-L., Nema, P. K., Zhao, J.-H., Liu, Z.-L., Deng, L.-Z., Gao, Z.-J., & Xiao, H.-W. (2018). Pulsed vacuum drying enhances drying kinetics and quality of lemon slices. Journal of Food Engineering, 224, 129–138. https://doi.org/10.1016/j.jfoodeng.2018.01.002
  • Zhang, X.-L., Zhong, C.-S., Mujumdar, A. S., Yang, X.-H., Deng, L.-Z., Wang, J., & Xiao, H.-W. (2019). Cold plasma pretreatment enhances drying kinetics and quality attributes of chili pepper (Capsicum annuum L.). Journal of Food Engineering, 241, 51–57. https://doi.org/10.1016/j.jfoodeng.2018.08.002
  • Zhang, Y., Zhu, G., Li, X., Zhao, Y., Lei, D., Ding, G., Ambrose, K., & Liu, Y. (2020). Combined medium- and short-wave infrared and hot air impingement drying of sponge gourd (Luffa cylindrical) slices. Journal of Food Engineering, 284, 110043. https://doi.org/10.1016/j.jfoodeng.2020.110043
  • Zotarelli, M. F., Carciofi, B. A. M., & Laurindo, J. B. (2015). Effect of process variables on the drying rate of mango pulp by Refractance Window. Food Research International, 69, 410–417. https://doi.org/10.1016/j.foodres.2015.01.013