- Alañón, M. E., Alarcón, M., Marchante, L., Díaz-Maroto, M. C., & Pérez-Coello, M. S. (2017). Extraction of natural flavorings with antioxidant capacity from cooperage by-products by green extraction procedure with subcritical fluids. Industrial Crops and Products, 103, 222–232. https://doi.org/10.1016/j.indcrop.2017.03.050
- AOAC. (2005). Official Methods of Analysis of AOAC International. In Association of Official Analysis Chemists International.
- Azizi, D., Jafari, S. M., Mirzaei, H., & Dehnad, D. (2017). The influence of refractance window drying on qualitative properties of kiwifruit slices. International Journal of Food Engineering, 13(2). https://doi.org/10.1515/ijfe-2016-0201
- Calderón-Chiu, C., Martínez-Sánchez, C. E., Rodríguez-Miranda, J., Juárez-Barrientos, J. M., Carmona-García, R., & Herman-Lara, E. (2020). Evaluation of the combined effect of osmotic and Refractance Window drying on the drying kinetics, physical, and phytochemical properties of beet. Drying Technology, 38(12), 1663–1675. https://doi.org/10.1080/07373937.2019.1655439
- Calín-Sánchez, Á., Lipan, L., Cano-Lamadrid, M., Kharaghani, A., Masztalerz, K., Carbonell-Barrachina, Á. A., & Figiel, A. (2020). Comparison of traditional and novel drying techniques and its effect on quality of fruits, vegetables and aromatic herbs. Foods, 9(9), 1261. https://doi.org/10.3390/foods9091261
- Caparino, O. A., Tang, J., Nindo, C. I., Sablani, S. S., Powers, J. R., & Fellman, J. K. (2012). Effect of drying methods on the physical properties and microstructures of mango (Philippine ‘Carabao’ var.) powder. Journal of Food Engineering, 111(1), 135–148. https://doi.org/10.1016/j.jfoodeng.2012.01.010
- Celli, G. B., Khattab, R., Ghanem, A., & Brooks, M. S.-L. (2016). Refractance WindowTM drying of haskap berry – Preliminary results on anthocyanin retention and physicochemical properties. Food Chemistry, 194, 218–221. https://doi.org/10.1016/j.foodchem.2015.08.012
- Chhikara, N., Kushwaha, K., Sharma, P., Gat, Y., & Panghal, A. (2019). Bioactive compounds of beetroot and utilization in food processing industry: A critical review. In Food Chemistry. https://doi.org/10.1016/j.foodchem.2018.08.022
- Dadhaneeya, H., Nayak, P. K., Saikia, D., Kondareddy, R., Ray, S., & Kesavan, R. krishnan. (2023). The impact of refractance window drying on the physicochemical properties and bioactive compounds of malbhog banana slice and pulp. Applied Food Research, 3(1), 100279. https://doi.org/10.1016/j.afres.2023.100279
- El Broudi, S., Zehhar, N., Abdenouri, N., Boussaid, A., Hafidi, A., & Benkhalti, F. (2022). Investigation of drying kinetics and drying conditions on biochemical, sensory, and microstructural parameters of “Sefri” pomegranate arils (Punica granatum L. a Moroccan variety). Revista Mexicana de Ingeniería Química, 21(3), 1–25. https://doi.org/10.24275/rmiq/Alim2813
- ElGamal, R., Song, C., Rayan, A. M., Liu, C., Al-Rejaie, S., & ElMasry, G. (2023). Thermal degradation of bioactive compounds during drying process of horticultural and agronomic products: A comprehensive overview. Agronomy, 13(6), 1580. https://doi.org/10.3390/agronomy13061580
- Figiel, A. (2010). Drying kinetics and quality of beetroots dehydrated by combination of convective and vacuum-microwave methods. Journal of Food Engineering, 98(4), 461–470. https://doi.org/10.1016/j.jfoodeng.2010.01.029
- Franco, S., Jaques, A., Pinto, M., Fardella, M., Valencia, P., Núñez, H., Ramírez, C., & Simpson, R. (2019). Dehydration of salmon (Atlantic salmon), beef, and apple (Granny Smith) using Refractance windowTM: Effect on diffusion behavior, texture, and color changes. Innovative Food Science & Emerging Technologies, 52, 8–16. https://doi.org/10.1016/j.ifset.2018.12.001
- García-Moreira, D. P., Moreno, I., Irigoyen-Campuzano, J. R., Martín-Domínguez, I., García-Valladares, O., & López-Vidaña, E. C. (2024). Effect of convective drying on color, water activity, and browning index of peach slices. Revista Mexicana de Ingeniería Química, 23(1), 1–18. https://doi.org/10.24275/rmiq/Alim24188
- Gokhale, S. V., & Lele, S. S. (2011). Dehydration of red beet root (Beta vulgaris) by hot air drying: Process optimization and mathematical modeling. Food Science and Biotechnology, 20(4), 955–964. https://doi.org/10.1007/s10068-011-0132-4
- Gong, X., Huang, X., Yang, T., Wen, J., Zhou, W., & Li, J. (2019). Effect of drying methods on physicochemical properties and antioxidant activities of okra pods. Journal of Food Processing and Preservation, 43(12). https://doi.org/10.1111/jfpp.14277
- Hamid, M. G., & Mohamed, N. A. A. A. (2018). Effect of different drying methods on quality attributes of beetroot ( Beta vulgaris ) slices. World Journal of Science, Technology and Sustainable Development, 15(3), 287–298. https://doi.org/10.1108/WJSTSD-11-2017-0043
- Hernández-Santos, B., Martínez-Sánchez, C. E., Torruco-Uco, J. G., Rodríguez-Miranda, J., Ruiz-López, I. I., Vajando-Anaya, E. S., Carmona-García, R., & Herman-Lara, E. (2016). Evaluation of physical and chemical properties of carrots dried by Refractance Window drying. Drying Technology. https://doi.org/10.1080/07373937.2015.1118705
- Hossain, M. B., Barry-Ryan, C., Martin-Diana, A. B., & Brunton, N. P. (2010). Effect of drying method on the antioxidant capacity of six Lamiaceae herbs. Food Chemistry, 123(1), 85–91. https://doi.org/10.1016/j.foodchem.2010.04.003
- Hu, D., Liu, X., Qin, Y., Yan, J., Li, R., & Yang, Q. (2023). The impact of different drying methods on the physical properties, bioactive components, antioxidant capacity, volatile components and industrial application of coffee peel. Food Chemistry: X, 19, 100807. https://doi.org/10.1016/j.fochx.2023.100807
- Janiszewska, E. (2014). Microencapsulated beetroot juice as a potential source of betalain. Powder Technology, 264, 190–196. https://doi.org/10.1016/j.powtec.2014.05.032
- Jia, Y., Khalifa, I., Hu, L., Zhu, W., Li, J., Li, K., & Li, C. (2019). Influence of three different drying techniques on persimmon chips’ characteristics: A comparison study among hot-air, combined hot-air-microwave, and vacuum-freeze drying techniques. Food and Bioproducts Processing, 118, 67–76. https://doi.org/10.1016/j.fbp.2019.08.018
- Jiratanan, T., & Liu, R. H. (2004). Antioxidant activity of processed table beets (Beta vulgaris var, conditiva) and green beans (Phaseolus vulgaris L.). Journal of Agricultural and Food Chemistry, 52(9), 2659–2670. https://doi.org/10.1021/jf034861d
- Karam, M. C., Petit, J., Zimmer, D., Baudelaire Djantou, E., & Scher, J. (2016). Effects of drying and grinding in production of fruit and vegetable powders: A review. In Journal of Food Engineering. https://doi.org/10.1016/j.jfoodeng.2016.05.001
- Kumar, M., Madhumita, M., Prabhakar, P. K., & Basu, S. (2022). Refractance window drying of food and biological materials: Status on mechanisms, diffusion modelling and hybrid drying approach. Critical Reviews in Food Science and Nutrition, 1–24. https://doi.org/10.1080/10408398.2022.2132210
- Li, H., Xie, L., Ma, Y., Zhang, M., Zhao, Y., & Zhao, X. (2019). Effects of drying methods on drying characteristics, physicochemical properties and antioxidant capacity of okra. LWT, 101, 630–638. https://doi.org/10.1016/j.lwt.2018.11.076
- Mahanti, N. K., Chakraborty, S. K., Sudhakar, A., Verma, D. K., Shankar, S., Thakur, M., Singh, S., Tripathy, S., Gupta, A. K., & Srivastav, P. P. (2021). Refractance WindowTM-Drying vs. other drying methods and effect of different process parameters on quality of foods: A comprehensive review of trends and technological developments. Future Foods, 3, 100024. https://doi.org/10.1016/j.fufo.2021.100024
- Mandale, N. M., Attkan, A. K., Kumar, S., & Kumar, N. (2023). Drying kinetics and quality assessment of refractance window dried beetroot. Journal of Food Process Engineering, 46(7). https://doi.org/10.1111/jfpe.14332
- Menon, A., Stojceska, V., & Tassou, S. A. (2020). A systematic review on the recent advances of the energy efficiency improvements in non-conventional food drying technologies. Trends in Food Science & Technology, 100, 67–76. https://doi.org/10.1016/j.tifs.2020.03.014
- Nguyen, V. T., Van Vuong, Q., Bowyer, M. C., Van Altena, I. A., & Scarlett, C. J. (2015). Effects of different drying methods on bioactive compound yield and antioxidant capacity of Phyllanthus amarus. Drying Technology, 33(8), 1006–1017. https://doi.org/10.1080/07373937.2015.1013197
- Ochoa-Martínez, C. I., Quintero, P. T., Ayala, A. A., & Ortiz, M. J. (2012). Drying characteristics of mango slices using the Refractance WindowTM technique. Journal of Food Engineering, 109(1), 69–75. https://doi.org/10.1016/j.jfoodeng.2011.09.032
- Ortiz-Jerez, M. J., Gulati, T., Datta, A. K., & Ochoa-Martínez, C. I. (2015). Quantitative understanding of Refractance WindowTM drying. Food and Bioproducts Processing. https://doi.org/10.1016/j.fbp.2015.05.010
- Pinela, J., Barros, L., Dueñas, M., Carvalho, A. M., Santos-Buelga, C., & Ferreira, I. C. F. R. (2012). Antioxidant activity, ascorbic acid, phenolic compounds and sugars of wild and commercial Tuberaria lignosa samples: Effects of drying and oral preparation methods. Food Chemistry, 135(3), 1028–1035. https://doi.org/10.1016/j.foodchem.2012.05.038
- Preethi, R., Deotale, S. M., Moses, J. A., & Anandharamakrishnan, C. (2020). Conductive hydro drying of beetroot (Beta vulgaris L.) pulp: Insights for natural food colorant applications. Journal of Food Process Engineering, 43(12). https://doi.org/10.1111/jfpe.13557
- Raghavi, L. M., Moses, J. A., & Anandharamakrishnan, C. (2018). Refractance window drying of foods: A review. Journal of Food Engineering. https://doi.org/10.1016/j.jfoodeng.2017.11.032
- Rajoriya, D., Shewale, S. R., & Hebbar, H. U. (2019). Refractance window drying of apple slices: Mass transfer phenomena and quality parameters. Food and Bioprocess Technology, 12(10), 1646–1658. https://doi.org/10.1007/s11947-019-02334-7
- Rehman, S., Mufti, I. U., Ain, Q. U., & Ijaz, B. (2024). Bioactive Compounds and Biological Activities of Red Beetroot (Beta vulgaris L.) (pp. 1–31). https://doi.org/10.1007/978-3-031-29006-0_42-1
- Rodríguez, J., Mulet, A., & Bon, J. (2014). Influence of high-intensity ultrasound on drying kinetics in fixed beds of high porosity. Journal of Food Engineering, 127, 93–102. https://doi.org/10.1016/j.jfoodeng.2013.12.002
- Roshanak, S., Rahimmalek, M., & Goli, S. A. H. (2016). Evaluation of seven different drying treatments in respect to total flavonoid, phenolic, vitamin C content, chlorophyll, antioxidant activity and color of green tea (Camellia sinensis or C. assamica) leaves. Journal of Food Science and Technology, 53(1), 721–729. https://doi.org/10.1007/s13197-015-2030-x
- Ruiz-López, I. I., Martínez-Sánchez, C. E., Cobos-Vivaldo, R., & Herman-Lara, E. (2008). Mathematical modeling and simulation of batch drying of foods in fixed beds with airflow reversal. Journal of Food Engineering, 89(3), 310–318. https://doi.org/10.1016/j.jfoodeng.2008.05.009
- Sadowska-Bartosz, I., & Bartosz, G. (2021). Biological properties and applications of betalains. Molecules, 26(9), 2520. https://doi.org/10.3390/molecules26092520
- Santos, S. de J. L., Canto, H. K. F., da Silva, L. H. M., & Rodrigues, A. M. da C. (2022). Characterization and properties of purple yam ( Dioscorea trifida ) powder obtained by refractance window drying. Drying Technology, 40(6), 1103–1113. https://doi.org/10.1080/07373937.2020.1847140
- Seremet, L., Nistor, O.-V., Andronoiu, D. G., Mocanu, G. D., Barbu, V. V., Maidan, A., Rudi, L., & Botez, E. (2020). Development of several hybrid drying methods used to obtain red beetroot powder. Food Chemistry, 310, 125637. https://doi.org/10.1016/j.foodchem.2019.125637
- Tontul, İ., Kasimoglu, Z., Asik, S., Atbakan, T., & Topuz, A. (2018). Functional properties of chickpea protein isolates dried by refractance window drying. International Journal of Biological Macromolecules. https://doi.org/10.1016/j.ijbiomac.2017.11.135
- Wang, J., Law, C.-L., Nema, P. K., Zhao, J.-H., Liu, Z.-L., Deng, L.-Z., Gao, Z.-J., & Xiao, H.-W. (2018). Pulsed vacuum drying enhances drying kinetics and quality of lemon slices. Journal of Food Engineering, 224, 129–138. https://doi.org/10.1016/j.jfoodeng.2018.01.002
- Zhang, X.-L., Zhong, C.-S., Mujumdar, A. S., Yang, X.-H., Deng, L.-Z., Wang, J., & Xiao, H.-W. (2019). Cold plasma pretreatment enhances drying kinetics and quality attributes of chili pepper (Capsicum annuum L.). Journal of Food Engineering, 241, 51–57. https://doi.org/10.1016/j.jfoodeng.2018.08.002
- Zhang, Y., Zhu, G., Li, X., Zhao, Y., Lei, D., Ding, G., Ambrose, K., & Liu, Y. (2020). Combined medium- and short-wave infrared and hot air impingement drying of sponge gourd (Luffa cylindrical) slices. Journal of Food Engineering, 284, 110043. https://doi.org/10.1016/j.jfoodeng.2020.110043
- Zotarelli, M. F., Carciofi, B. A. M., & Laurindo, J. B. (2015). Effect of process variables on the drying rate of mango pulp by Refractance Window. Food Research International, 69, 410–417. https://doi.org/10.1016/j.foodres.2015.01.013
|