Vol. 23, No. 3 (2024), Alim24302 https://doi.org/10.24275/rmiq/Alim24302


Evaluation of the particle size, water state, viscosity and viscoelastic properties (SAOS and LAOS) of yogurt samples with different protein contents (standard, protein-rich and high-protein Greek type)


 

Authors

H. Espinosa-Andrews, J.N. Haro-González, J.A. Barbosa-Nuñez, E. Aguirre-Mandujano, C. Lobato Calleros


Abstract

The physical attributes of dairy products are related to the formulation, quality and processability of the product. In this work, the water state, particle size, viscosity, and viscoelastic properties of three yogurt formulations with different protein contents (standard, protein-rich and Greek-type) were evaluated. The melting enthalpy of water was evaluated by DSC, revealing that water molecules are found in different water states. Lasser diffraction measured the particle size of the microgels; bimodal distributions were observed in the yogurts. The protein-rich and Greek-type yogurts had the smaller sizes with average D[4,3] values of 26.4 and 24.8 µm, respectively. The viscosity of the yogurts was fitted to the power law and Herschel-Buckley models, in which greater yield stress was found for the Greek-type yogurt. Small amplitude oscillatory shear experiments revealed the elastic behavior of the samples, with higher elastic moduli for the Greek-type yogurt. Large amplitude oscillation stress (LAOS) experiments were used to evaluate the nonlinear rheological response of the yogurts. 3D-Lissajous curves revealed that standard and high-protein yogurts display similar shear-thinning behavior as the shear stress increases, but this was less remarkable in the Greek-type yogurt. This study can be used to determine the most relevant parameters for dairy food formulation.


Keywords

snack, extrusion, pulses, glycaemic index, protein, dietary fiber.


References

  • Bae, J.-E., Lee, M., Cho, K. S., Seo, K. H., & Kang, D.-G. (2013). Comparison of stress-controlled and strain-controlled rheometers for large amplitude oscillatory shear. Rheologica Acta, 52(10–12), 841–857. doi: 10.1007/s00397-013-0720-8
  • Chakraborty, P., G Rudra, S., Vishwakarma, R., Shivhare, U., Basu, S., & Chavan, R. (2018). Rheological and Textural Properties of Milk Gels (pp. 259–292). doi: 10.1201/9781315169408-11
  • Crispín-Isidro, G., Lobato-Calleros, C., Espinosa-Andrews, H., Alvarez-Ramirez, J., & Vernon-Carter, E. J. (2015). Effect of inulin and agave fructans addition on the rheological, microstructural and sensory properties of reduced-fat stirred yogurt. LWT - Food Science and Technology, 62(1), 438–444. doi: 10.1016/j.lwt.2014.06.042
  • Divyang, M., Prajapati, Shrigod, N., Prajapati, Er. R., & Pandit, P. (2016). Textural and Rheological Properties of Yoghurt: A Review. Advances in Life Sciences, 5, 5238–5254.
  • Erturk, M. Y., Bonilla, J. C., & Kokini, J. (2021). Relationship of non-linear rheological properties and quantitative network analysis parameters as a function of increasingly large amplitude deformations in non-fat, low-fat and high-fat yogurt products. Food Hydrocolloids, 111, 106194. doi: https://doi.org/10.1016/j.foodhyd.2020.106194
  • Erturk, M. Y., Rogers, S. A., & Kokini, J. (2022). Comparison of Sequence of Physical Processes (SPP) and Fourier Transform Coupled with Chebyshev Polynomials (FTC) methods to Interpret Large Amplitude Oscillatory Shear (LAOS) Response of Viscoelastic Doughs and Viscous Pectin Solution. Food Hydrocolloids, 128, 107558. doi: 10.1016/j.foodhyd.2022.107558
  • Espinosa-Andrews, H., & Rodríguez-Rodríguez, R. (2018). Water state diagram and thermal properties of fructans powders. Journal of Thermal Analysis and Calorimetry, 132(1), 197–204. doi: 10.1007/s10973-017-6868-1
  • Farag, M. A., Saleh, H. A., El Ahmady, S., & Elmassry, M. M. (2022). Dissecting Yogurt: the Impact of Milk Types, Probiotics, and Selected Additives on Yogurt Quality. Food Reviews International, 38(sup1), 634–650. doi: 10.1080/87559129.2021.1877301
  • Flores-Silva, P., Martínez-Yañez, R. C., Rodríguez-Huezo, M. E., & Alvarez-Ramirez, J. (2022). Nutritional protein quality and digestibility changes during food processing. Revista Mexicana de Ingeniería Química, 21(1), 1–30. doi: 10.24275/rmiq/Alim2748
  • Gilbert, A., Rioux, L.-E., St-Gelais, D., & Turgeon, S. L. (2020). Studying stirred yogurt microstructure using optical microscopy: How smoothing temperature and storage time affect microgel size related to syneresis. Journal of Dairy Science, 103(3), 2139–2152. doi: 10.3168/jds.2019-16787
  • Gilbert, Audrey, & Turgeon, S. L. (2021). Studying stirred yogurt microstructure and its correlation to physical properties: A review. Food Hydrocolloids, 121, 106970. doi: https://doi.org/10.1016/j.foodhyd.2021.106970
  • Heck, A., Nöbel, S., Hitzmann, B., & Hinrichs, J. (2021). Volume Fraction Measurement of Soft (Dairy) Microgels by Standard Addition and Static Light Scattering. Food Biophysics, 16(2), 237–253. doi: 10.1007/s11483-021-09665-z
  • Hyun, K., Wilhelm, M., Klein, C. O., Cho, K. S., Nam, J. G., Ahn, K. H., Lee, S. J., Ewoldt, R. H., & McKinley, G. H. (2011). A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS). Progress in Polymer Science, 36(12), 1697–1753. doi: https://doi.org/10.1016/j.progpolymsci.2011.02.002
  • Iijima, M., Hatakeyama, T., & Hatakeyama, H. (2021). DSC and TMA Studies of Polysaccharide Physical Hydrogels. Analytical Sciences, 37(1), 211–219. doi: 10.2116/analsci.20SAR10
  • Le, A. N. M., Erturk, M. Y., Shim, Y. H., Rogers, S. A., & Kokini, J. (2023). A critical study of the nonlinear rheological properties in major classes of foods using the Sequence of Physical Processes (SPP) method and the Fourier Transform Coupled with Chebyshev Decomposition (FTC) method. Food Research International, 174, 113587. doi: https://doi.org/10.1016/j.foodres.2023.113587
  • Li, Q., Xu, M., Xie, J., Su, E., Wan, Z., Sagis, L. M. C., & Yang, X. (2021). Large amplitude oscillatory shear (LAOS) for nonlinear rheological behavior of heterogeneous emulsion gels made from natural supramolecular gelators. Food Research International, 140, 110076. doi: 10.1016/j.foodres.2020.110076
  • Martínez‐Padilla, L. P. (2024). Rheology of liquid foods under shear flow conditions: Recently used models. Journal of Texture Studies, 55(1). doi: 10.1111/jtxs.12802
  • McClements, D. J. (2023). Modeling the rheological properties of plant‐based foods: Soft matter physics principles. Sustainable Food Proteins, 1(3), 101–132. doi: 10.1002/sfp2.1015
  • Moussier, M., Guénard-Lampron, V., Lachin, K., Moulin, G., Turgeon, S. L., Michon, C., Huc-Mathis, D., & Bosc, V. (2019). What do stirred yogurt microgels look like? Comparison of laser diffraction, 2D dynamic image analysis and 3D reconstruction. Food Structure, 20, 100107. doi: 10.1016/j.foostr.2019.100107
  • Najgebauer-Lejko, D., Witek, M., Żmudziński, D., & Ptaszek, A. (2020). Changes in the viscosity, textural properties, and water status in yogurt gel upon supplementation with green and Pu-erh teas. Journal of Dairy Science, 103(12), 11039–11049. doi: 10.3168/jds.2020-19032
  • Ortíz-Deleón, A. M., Ramírez-Santiago, C., Sandoval-Castilla, O., Román-Guerrero, A., & Aguirre-Mandujano, E. (2023). Evaluation of physicochemical, rheological, textural and thermal properties of Mexican manchego-type cheese manufactured from goat s milk. Revista Mexicana de Ingeniería Química, 22(1), 1–23. doi: 10.24275/rmiq/Alim3012
  • Ptaszek, P. (2017). Chapter 5 - Large Amplitude Oscillatory Shear (LAOS) Measurement and Fourier-Transform Rheology: Application to Food. In J. Ahmed, P. Ptaszek, & S. Basu (Eds.), Advances in Food Rheology and Its Applications (pp. 87–123). Woodhead Publishing, Elsevier. doi: https://doi.org/10.1016/B978-0-08-100431-9.00005-X
  • Rodríguez-Rodríguez, R., Espinosa-Andrews, H., Morales-Hernández, N., Lobato-Calleros, C., & Vernon-Carter, E. J. (2019). Mesquite gum/chitosan insoluble complexes: relationship between the water state and viscoelastic properties. Journal of Dispersion Science and Technology, 40(9), 1345–1352. doi: 10.1080/01932691.2018.1513848
  • Rogers, S. (2018). Large amplitude oscillatory shear: Simple to describe, hard to interpret. Physics Today, 71(7), 34–40. doi: 10.1063/PT.3.3971
  • Sala, G., de Wijk, R. A., van de Velde, F., & van Aken, G. A. (2008). Matrix properties affect the sensory perception of emulsion-filled gels. Food Hydrocolloids, 22(3), 353–363. doi: 10.1016/j.foodhyd.2006.12.009
  • Sandoval-Castilla, O., Lobato-Calleros, C., Aguirre-Mandujano, E., & Vernon-Carter, E. J. (2004). Microstructure and texture of yogurt as influenced by fat replacers. International Dairy Journal, 14(2), 151–159. doi: https://doi.org/10.1016/S0958-6946(03)00166-3
  • Suwannasang, S., Zhong, Q., Thumthanaruk, B., Vatanyoopaisarn, S., Uttapap, D., Puttanlek, C., & Rungsardthong, V. (2022). Physicochemical properties of yogurt fortified with microencapsulated Sacha Inchi oil. LWT, 161, 113375. doi: 10.1016/j.lwt.2022.113375
  • Vélez‐Ruiz, J. F., Barbosa Cánovas, G. V, & Peleg, M. (1997). Rheological properties of selected dairy products. Critical Reviews in Food Science and Nutrition, 37(4), 311–359. doi: 10.1080/10408399709527778