Vol. 23, No. 3 (2024), Alim24322 https://doi.org/10.24275/rmiq/Alim24322


Study of drying, thermal, shrinkage, and color kinetics using digital and thermographic imaging of potato slices under real-time convective drying


 

Authors

S. M. Gutiérrez-Martínez, J. D. Hernández-Varela, J. J. Chanona-Pérez, J. V. Méndez-Méndez, H. González-Martínez, M. de J. Perea-Flores, S. A. Mendoza-Vázquez, L. González-Victoriano


Abstract

Convective drying has been widely used for extending the shelf life of foodstuffs as well as for the study of mass and heat transfer phenomena. This contribution aims to conduct a comprehensive study involving mass and heat transfer kinetics, modeling, and evaluation of surface temperatures, shrinkage, and color during the real-time convective drying of potato slices. A tunnel dryer was specially designed to couple digital and thermal cameras to follow the real-time evolution of the surface temperatures, shrinkage, deformation, and color parameters. Drying and thermal kinetics were studied with Fick's second law, Fourier’s approach, and semi-empirical mathematical models to obtain effective moisture diffusivity and energy activation to select the best model for describing drying and thermal kinetics. Effective diffusivity coefficients ranged from 6.12 x 10-10 to 9.71 x 10-10 m2/s, the activation energy was 13.79 kJ/mol, while Page’s model and an exponential function of three parameters were shown to be suitable for modeling drying and thermal kinetics. In addition, morphometric and color parameters obtained in real-time help select the best drying conditions and final product quality. This contribution provides essential information for a fuller understanding of the drying, design, and operation of drying equipment for food materials.


Keywords

Semi-empirical models, thermal kinetics, image analysis, deformation, quality parameters.


References

  • Akpinar, E. K., & Toraman, S. (2016). Determination of drying kinetics and convective heat transfer coefficients of ginger slices. Heat and Mass Transfer/Waerme- Und Stoffuebertragung, 52(10), 2271–2281. https://doi.org/10.1007/s00231-015-1729-6
  • Arzate-Vázquez, I., Chanona-Pérez, J. J., de Perea-Flores, M. J., Calderón-Domínguez, G., Moreno-Armendáriz, M. A., Calvo, H., Godoy-Calderón, S., Quevedo, R., & Gutiérrez-López, G. (2011). Image Processing Applied to Classification of Avocado Variety Hass (Persea americana Mill.) During the Ripening Process. Food and Bioprocess Technology, 4(7), 1307–1313. https://doi.org/10.1007/s11947-011-0595-6
  • Azimi-Nejadian, H., & Hoseini, S. S. (2019). Study the effect of microwave power and slices thickness on drying characteristics of potato. Heat and Mass Transfer/Waerme- Und Stoffuebertragung, 55(10), 2921–2930. https://doi.org/10.1007/s00231-019-02633-x
  • Bai, J. W., Dai, Y., Wang, Y. C., Cai, J. R., Zhang, L., & Tian, X. Y. (2022). Potato Slices Drying: Pretreatment Affects the Three-Dimensional Appearance and Quality Attributes. Agriculture (Switzerland), 12(11). https://doi.org/10.3390/agriculture12111841
  • Cheng, X., Wang, S., Shahid Iqbal, M., Pan, L., & Hong, L. (2023). Effect of ultrasound-assisted osmotic dehydration on the drying kinetics, water state, and physicochemical properties of microwave vacuum-dried potato slices. Ultrasonics Sonochemistry, 99(July), 106557. https://doi.org/10.1016/j.ultsonch.2023.106557
  • Deng, L. Z., Yang, X. H., Mujumdar, A. S., Zhao, J. H., Wang, D., Zhang, Q., Wang, J., Gao, Z. J., & Xiao, H. W. (2018). Red pepper (Capsicum annuum L.) drying: Effects of different drying methods on drying kinetics, physicochemical properties, antioxidant capacity, and microstructure. Drying Technology, 36(8), 893–907. https://doi.org/10.1080/07373937.2017.1361439
  • Doymaz, İ. (2017). Drying kinetics, rehydration and colour characteristics of convective hot-air drying of carrot slices. Heat and Mass Transfer/Waerme- Und Stoffuebertragung, 53(1), 25–35. https://doi.org/10.1007/s00231-016-1791-8
  • ElGamal, R., & Liu, C. (2021). Experimental and simulation study on shrinkage of Radix Paeoniae Alba slices during drying process. Drying Technology, 0(0), 1–12. https://doi.org/10.1080/07373937.2021.1904411
  • Gaeini, Z., Malmir, H., Mirmiran, P., Feizy, Z., & Azizi, F. (2023). Snack consumption patterns and their associations with risk of incident metabolic syndrome: Tehran lipid and glucose study. Nutrition and Metabolism, 20(1), 1–9. https://doi.org/10.1186/s12986-023-00745-0
  • García-Moreira, D. P., Moreno, I., Irigoyen-Campuzano, J. R., Martín-Domínguez, I., García-Valladares, O., & López-Vidaña, E. C. (2024). Effect of convective drying on color, water activity, and browning index of peach slices. Revista Mexicana de Ingeniera Quimica, 23(1), 97–104. https://doi.org/10.24275/rmiq/Alim24188
  • Geng, Z., Wang, H., Torki, M., Beigi, M., Zhu, L., Huang, X., Yang, X., & Hu, B. (2023). Thermodynamically analysis and optimization of potato drying in a combined infrared/convective dryer. Case Studies in Thermal Engineering, 42(August 2022), 102671. https://doi.org/10.1016/j.csite.2022.102671
  • Gomes, J. F. S., & Leta, F. R. (2012). Applications of computer vision techniques in the agriculture and food industry: A review. European Food Research and Technology, 235(6), 989–1000. https://doi.org/10.1007/s00217-012-1844-2
  • Gumeta-Chavez, C., Chanona-Perez, J. J., Mendoza-Perez, J. A., Terres-Rojas, E., Garibay-Febles, V., & Gutierrez-Lopez, G. F. (2011). Shrinkage and deformation of Agave atrovirens Karw tissue during convective drying: Influence of structural arrangements. Drying Technology, 29(6), 612–623. https://doi.org/10.1080/07373937.2010.514380
  • Jaubert-Garibay, S., Hernández-Varela, J. D., Chanona-Pérez, J. J., Cárdenas-Pérez, S., Herrera-López, E. J., & Gutiérrez-López, G. F. (2023). Assessing the product quality of mango slices treated with osmotic and microwave drying by means of image, microstructural, and multivariate analyses. Drying Technology, 41(3), 363–377. https://doi.org/10.1080/07373937.2022.2092493
  • Keneni, Y. G., Hvoslef-Eide, A. K. (Trine., & Marchetti, J. M. (2019). Mathematical modelling of the drying kinetics of Jatropha curcas L. seeds. Industrial Crops and Products, 132(July 2018), 12–20. https://doi.org/10.1016/j.indcrop.2019.02.012
  • Khan, M. I. H., Batuwatta-Gamage, C. P., Karim, M. A., & Gu, Y. (2022). Fundamental Understanding of Heat and Mass Transfer Processes for Physics-Informed Machine Learning-Based Drying Modelling. Energies, 15(24), 9347. https://doi.org/10.3390/en15249347
  • Leeratanarak, N., Devahastin, S., & Chiewchan, N. (2006). Drying kinetics and quality of potato chips undergoing different drying techniques. Journal of Food Engineering, 77(3), 635–643. https://doi.org/10.1016/j.jfoodeng.2005.07.022
  • Mahiuddin, M., Khan, M. I. H., Kumar, C., Rahman, M. M., & Karim, M. A. (2018). Shrinkage of Food Materials During Drying: Current Status and Challenges. Comprehensive Reviews in Food Science and Food Safety, 17(5), 1113–1126. https://doi.org/10.1111/1541-4337.12375
  • Mühlbauer, W., & Müller, J. (2020). Drying Atlas. In Drying Atlas. https://doi.org/10.1016/c2018-0-02312-9
  • Naderinezhad, S., Etesami, N., Najafabady, A. P., & Falavarjani, M. G. (2016). Mathematical modeling of drying of potato slices in a forced convective dryer based on important parameters. Food Science and Nutrition, 4(1), 110–118. https://doi.org/10.1002/fsn3.258
  • Pei, F., Shi, Y., Mariga, A. M., Yang, W. jian, Tang, X. zhi, Zhao, L. yan, An, X. xin, & Hu, Q. hui. (2014). Comparison of Freeze-Drying and Freeze-Drying Combined with Microwave Vacuum Drying Methods on Drying Kinetics and Rehydration Characteristics of Button Mushroom (Agaricus bisporus) Slices. Food and Bioprocess Technology, 7(6), 1629–1639. https://doi.org/10.1007/s11947-013-1199-0
  • Perea-Flores, M. J., Garibay-Febles, V., Chanona-Pérez, J. J., Calderón-Domínguez, G., Méndez-Méndez, J. V., Palacios-González, E., & Gutiérrez-López, G. F. (2012). Mathematical modelling of castor oil seeds (Ricinus communis) drying kinetics in fluidized bed at high temperatures. Industrial Crops and Products, 38(1), 64–71. https://doi.org/10.1016/j.indcrop.2012.01.008
  • Pieniazek, F., & Messina, V. (2017). Texture and color analysis of freeze-dried potato (cv. Spunta) using instrumental and image analysis techniques. International Journal of Food Properties, 20(6), 1422–1431. https://doi.org/10.1080/10942912.2016.1211143
  • Raponi, F., Moscetti, R., Nallan Chakravartula, S. S., Fidaleo, M., & Massantini, R. (2022). Monitoring the hot-air drying process of organically grown apples (cv. Gala) using computer vision. Biosystems Engineering, 223, 1–13. https://doi.org/10.1016/j.biosystemseng.2021.07.005
  • Santacruz-Vázquez, V., Santacruz-Vázquez, C., Welti-Chanes, J., Farrera-Rebollo, R. R., Alamilla-Beltrán, L., Chanona-Pérez, J., & Gutiérrez-López, G. F. (2008). Effects of air-drying on the shrinkage, surface temperatures and structural features if apples slabs by means of fractal analysis. Revista Mexicana de Ingeniera Qumica, 7(1), 55–63.
  • Silva Júnior, M. A. V., Leite, M. A., & Dacanal, G. C. (2023). Modelling of convective drying of potatoes polyhedrons. International Journal of Food Engineering , 19(12), 605–617. https://doi.org/10.1515/ijfe-2023-0016
  • Thuy, N. M., Giau, T. N., Tai, N. V., & Minh, V. Q. (2023). Drying kinetics and mathematical modeling of dried macaroni supplemented with Gac aril. Revista Mexicana de Ingeniera Quimica, 22(3), 97–104. https://doi.org/10.24275/rmiq/Alim23103
  • Traffano-Schiffo, M. V., Castro-Giráldez, M., Fito, P. J., & Balaguer, N. (2014). Thermodynamic model of meat drying by infrarred thermography. Journal of Food Engineering, 128, 103–110. https://doi.org/10.1016/j.jfoodeng.2013.12.024
  • Valdés-Parada, F. J., Wood, B. D., & Whitaker, S. (2023). Fick’s law: A derivation based on continuum mechanics. Revista Mexicana de Ingeniera Quimica, 22(3), 97–104. https://doi.org/10.24275/rmiq/Fen23102
  • Wang, H., Liu, Z. L., Vidyarthi, S. K., Wang, Q. H., Gao, L., Li, B. R., Wei, Q., Liu, Y. H., & Xiao, H. W. (2020). Effects of different drying methods on drying kinetics, physicochemical properties, microstructure, and energy consumption of potato (Solanum tuberosum L.) cubes. Drying Technology, 39(3), 418–431. https://doi.org/10.1080/07373937.2020.1818254
  • Yi, X. K., Wu, W. F., Zhang, Y. Q., Li, J. X., & Luo, H. P. (2012). Thin-layer drying characteristics and modeling of Chinese jujubes. Mathematical Problems in Engineering, 2012. https://doi.org/10.1155/2012/386214
Zhang, W. P., Yang, X. H., Mujumdar, A. S., Ju, H. Y., & Xiao, H. W. (2021). The influence mechanism and control strategy of relative humidity on hot air drying of fruits and vegetables: a review. Drying Technology, 1(1), 1–18. https://doi.org/10.1080/07373937.2021.1943669