Vol. 23, No. 3 (2024), Alim24326 https://doi.org/10.24275/rmiq/Alim24326


Biodegradable films based on tilapia collagen (Oreochromis sp): improvement of properties with PLA and PCL bilayers with potential use in sustainable food packaging


 

Authors

A.M. Muñoz-Suarez, M. Cortés-Rodríguez, R. Ortega-Toro


Abstract

The study aimed to develop biodegradable films from collagen (Col) obtained from tilapia by-products (Oreochromis Sp) in combination with polylactic acid (PLA) and polycaprolactone (PCL). For collagen extraction, 0.1 N NaOH was used in a solid-liquid ratio of 1:20 (w/v), the fat was removed from the tilapia skin using 10% butyl alcohol, and for the scale’s decalcification with 0.5 M EDTA. The yield of the collagen obtained in both by-products was determined and characterized by the UV-VIS and FTIR (Fourier transform infrared spectroscopy) spectra compared to commercial collagen. As a result, there was a notable reduction in water content of less than 20%, and F3+PLA obtained a lower solubility percentage than the other bilayers. Regarding the contact angle, the bilayers obtained values greater than 100°. In mechanical tests, PCL presented the highest percentage of elongation at the point of break, which was 1067%, which could be related to greater flexibility and stretchability before breakage. The permeability values in the bilayers decreased significantly; F2+PLA indicated better control in the film as a barrier against water vapor, 0.55 g-mm/kPa-h-m2. Therefore, mixing a hydrophilic and a hydrophobic layer could improve the characteristics, providing higher stability and obtaining films with optimal properties to produce food packaging.


Keywords

Eco-friendly packaging, Tilapia by-products, Collagen extraction, Bilayers.


References

  • Arredondo, M.Z. (2017). Evaluation of mechanical properties and water vapor permeability of chitosan films. Revista Jóvenes en la Ciencia 3(2), 27-31. http://repositorio.ugto.mx/handle/20.500.12059/3454
  • Andonegi, M., Heras, K., Santos-Vizcaíno, E., Igartua, M., Hernández, R.M., de la Caba, K. and Guerrero, P. (2020). Structure-properties relationship of chitosan/collagen films with potential for biomedical applications. Carbohydrate Polymers 237, 116159. https://doi.org/10.1016/j.carbpol.2020.116159
  • Andrade, M.A., Barbosa, C.H., Cerqueira, M.A., Azevedo, A.G., Barros, C., Machado, A.V., Coelho, A., Furtado, R., Correia, C.B., Saraiva, M., Vilarinho, F., Silva, A.S. and Ramos, F. (2023). PLA films loaded with green tea and rosemary polyphenolic extracts as an active packaging for almond and beef. Food Packaging and Shelf Life 36, 101041. https://doi.org/10.1016/j.fpsl.2023.101041
  • Bhuimbar, M.V., Bhagwat, P.K. and Dandge, P.B. (2019). Extraction and characterization of acid soluble collagen from fish waste: development of collagen-chitosan blend as food packaging film. Journal of Environmental Chemical Engineering 7(2), 102983. https://doi.org/10.1016/j.jece.2019.102983
  • Blanquicet, R., Flórez, C., González, Y., Meza, E. and Rodríguez, J. (2015). Synthesis and properties of films based on chitosan/whey Synthesis and properties of films based on chitosan/whey. Polymers 25(1), 58–69. https://doi.org/10.1590/0104-1428.1558
  • Cano, A., Contreras, C., Chiralt, A. and González-Martínez, C. (2021). Using tannins as active compounds to develop antioxidant and antimicrobial chitosan and cellulose based films. Carbohydrate    Polymer    Technologies    and    Applications    2(3), 100156. https://doi.org/10.1016/j.carpta.2021.100156
  • Cedeño Sares, L.A., Armijos Cabrera, G., Arias Toro, D. and Bravo, V.P. (2023). Effect of glycerol as a plasticizer in modified corn starch films. Journal of Sciences and Research 8(4), 186-204. https://doi.org/10.5281/zenodo.10045595
  • Gómez-Contreras, P., Hernández-Fernández, J. and Ortega-Toro, R. (2023). Obtaining and characterization of collagen from the freshwater fish Prochilodus magdalenae: application in biodegradable films. Información Tecnológica 34(2), 89-98. http://dx.doi.org/10.4067/s0718-07642023000200089
  • Gómez-Contreras, P., Figueroa-López, K.J., Hernández-Fernández, J., Cortés Rodríguez, M. and Ortega-Toro, R. (2021). Effect of different essential oils on the properties of edible coatings based on yam (Dioscorea rotundata L.) starch and its application in strawberry (Fragaria vesca L.) preservation. Applied Sciences 11(22), 11057. https://doi.org/10.3390/app112211057
  • He, L., Lan, W., Wang, Y., Ahmed, S., and Liu, Y. (2019). Extraction and characterization of self-assembled collagen isolated from grass carp and crucian carp. Foods 8(9), 396. https://doi.org/10.3390/foods8090396
  • Jeong, H.S., Venkatesan, J. and Kim, S.K. (2013). Isolation and characterization of collagen from marine fish (Thunnus obesus). Biotechnology and Bioprocess Engineering 18(6), 1185–1191. https://doi.org/10.1007/s12257-013-0316-2
  • Kan, M. and Miller, S.A. (2022). Environmental impacts of plastic packaging of food products.        Resources, Conservation and        Recycling    180, 106156. https://doi.org/10.1016/j.resconrec.2022.106156
  • Li, W., Guo, R., Lan, Y., Zhang, Y., Xue, W. and Zhang, Y. (2014). Preparation and properties of cellulose nanocrystals reinforced collagen composite films. Journal of Biomedical Materials Research - Part A 102(4), 1131–1139. https://doi.org/10.1002/jbm.a.34792
  • Liu, J., Liu, Y., Brown, E.M., Ma, Z. and Liu, C.-K. (2021). Fabrication of composite films based on chitosan and vegetable-tanned collagen fibers crosslinked with genipin. Journal of the American Leather Chemists Association 116. https://doi.org/10.34314/jalca.v116i10.4616
  • Nagai, T. and Suzuki, N. (2000). Isolation of collagen from fish waste material - skin, bone and fins. Food Chemistry 68(3), 277–281. https://doi.org/10.1016/S0308-8146(99)00188-0
  • Nashchekina, Y.A., Starostina, A.A., Trusova, N.A., Sirotkina, M.Y., Lihachev, A.I. and Nashchekin, A.V. (2020). Molecular and fibrillar structure collagen analysis by FTIR spectroscopy. Journal of Physics: Conference Series 1697(1). Doi https://doi.org/10.1088/1742-6596/1697/1/012053  
  • Ocak, B. (2018). Film-forming ability of collagen hydrolysate extracted from leather solid wastes with chitosan. Environmental Science and Pollution Research 25(5), 4643-4655. https://doi.org/10.1007/s11356-017-0843-z
  • Ortega-Toro, R., Jiménez, A., Talens, P. and Chiralt, A. (2014). Properties of starch- hydroxypropyl methylcellulose-based films obtained by compression molding. Carbohydrate Polymers 109, 155–165. https://doi.org/10.1016/j.carbpol.2014.03.059
  • Ortega-Toro, R., Contreras, J., Talens, P. and Chiralt, A. (2015a). Physical and structural properties and thermal behaviour of starch-poly (ɛ-caprolactone) blend films for food packaging. Food Packaging and Shelf Life 5, 10-20. https://doi.org/10.1016/j.fpsl.2015.04.001  
  • Ortega-Toro, R., Morey, I., Talens, P. and Chiralt, A. (2015b). Active bilayer films of thermoplastic starch and polycaprolactone obtained by compression molding. Carbohydrate Polymers 127, 282-290. https://doi.org/10.1016/j.carbpol.2015.03.080
  • Perumal, R.K., Perumal, S., Thangam, R., Gopinath, A., Ramadass, S.K., Madhan, B. and Sivasubramanian, S. (2018). Collagen-fucoidan blend film with the potential to induce fibroblast  proliferation  for  regenerative  applications.  International  Journal  of Biological Macromolecules 106 1032–1040. https://doi.org/10.1016/j.ijbiomac.2017.08.111
  • Peñarubia, O., Toppe, J., Ahern, M., Ward, A. and Griffin, M. (2023). How value addition by utilization of tilapia processing by‐products can improve human nutrition and livelihood. Reviews in Aquaculture 15, 32-40. https://doi.org/10.1111/raq.12737
  • Rangel-Buitrago, N., Mendoza, A.V., Mantilla-Barbosa, E., Arroyo-Olarte, H., Arana, V. A., Trilleras, J., Gracia C.A., Neal, W.J. and Williams, A.T. (2021). Plastic pollution on the colombian central caribbean beaches. Marine Pollution Bulletin 162. https://doi.org/10.1016/j.marpolbul.2020.111837
  • Elango, J., Shakila, J., Arumugam, V., Geevaretnama, J. and Durairaj, S. (2015). Mechanical and barrier properties of multi-composite shark catfish (Pangasius fungaseous) skin gelatin films with the addition of sorbitol, clay and chitosan using response surface methodology. Journal of Molecular and Genetic Medicine S4, 004. https://doi.org/10.4172/1747-0862.s4-004
  • Rodríguez-Sepúlveda, L.J. and Orrego-Alzate, C.E. (2016). Applications of biopolymer and synthetic polymer blends: literature review. Revista Científica 25(2), 252-264. https://doi.org/10.14483//udistrital.jour.RC.2016.25.a9
  • Santiago-Gutierrez, R. (2020). Biodegradable films from devil fish (Pterygoplichthys pardalis) skin collagen. http://repositorio.digital.tuxtla.tecnm.mx/xmlui/handle/123456789/2034
  • Sharafi-Badr, P., Ehsandoost, E., Ghasemiyan, N., Mohammadi, M., Safari, R. and Habibi, M. (2023). Effect of sodium alginate-calcium chloride coating and glycerol and sorbitol concentration on oxidative stability and fungal growth of persian walnut (Juglans regia L.). Revista Mexicana de Ingeniería Química 22(1), Alim2928. https://doi.org/10.24275/rmiq/Alim2928
  • Slimane, E.B. and Sadok, S. (2018). Collagen from cartilaginous fish by-products for a potential application in bioactive film composite. Marine Drugs 16(6), 211. https://doi.org/10.3390/md16060211
  • Thakur, M., Majid, I., Hussain, S. and Nanda, V. (2021). Poly (ε‐caprolactone): a potential polymer for biodegradable food packaging applications. Packaging Technology and Science 34(8), 449-461.  https://doi.org/10.1002/pts.2572
  • Velarde-Rodríguez, M., Beltrán-Acosta, A., Pichardo-Velarde, J. and Amezcua-Vega, C. (2015). Collagen extraction from tilapia skins. Revista de Ciencias Naturales y Agropecuarias Septiembre 2(4), 631-639.
  • Vitale, P., Tasca, J., Bax, M., Flores, A., Politis, G. G. and Valenzuela, L. (2019). FTIR analysis of colagen preservation and possible contamination in quaternary bones samples from the pampas. Anales           de Arqueología   y Etnología        74,        169–189.
  • Wenhang, W., Yabin, W., Yanan, W., Xiaowei, Z., Xiao, W. and Guixian, G. (2016). Fabrication and characterization of microfibrillated cellulose and collagen composite films. Journal of Bioresources and Bioproducts 1(4), 162-168. https://doi.org/10.21967/jbb.v1i4.54
  • Yadav, D. and Dutta, J. (2024). A systematic review on recent development of chitosan/alginate-based polyelectrolyte complexes for wastewater treatment. International Journal of Environmental Science and Technology 21(3), 3381-3406. https://doi.org/10.1007/s13762-023-05244-6
  • Zapata Bravo, A., Vieira Escobar, V., Zapata-Domínguez, A. and Rodríguez-Ramírez, A. (2021). The circular economy of PET bottles in Colombia. Cuadernos de Administración 37(70), 1-18. https://doi.org/10.25100/cdea.v37i70.10912
  • Zapata-Luna, R.L., Davidov-Pardo, G., Pacheco, N., Ayora-Talavera, T., Espinosa-Andrews, H., García-Márquez, E. and Cuevas-Bernardino, J. C. (2023). Structural and physicochemical properties of bio-chemical chitosan and its performing in an active film with quercetin and Phaseolus polyanthus starch. Revista Mexicana de Ingeniería Química 22(2), Alim2315. https://doi.org/10.24275/rmiq/Alim2315