Vol. 23, No. 3 (2024), Bio24287 https://doi.org/10.24275/rmiq/Bio24287


Prototype flat photobioreactor with a settler for the cultivation of Tetradesmus dimorphus under mixotrophic metabolism under ambient conditions


 

Authors

S.G. Pérez-Bravo, M. del R. Castañeda-Chávez, L. Aguilera-Vázquez


Abstract

Large-scale biomass production is essential for the utilization of its metabolites. Closed and automated cultivation systems have many advantages, including better cultivation efficiencies, lower risk of contamination, and control of growth variables; however, their operating costs are greater than those of open systems, which generally use sterile culture and artificial lighting. To offer a cultivation alternative that combines the benefits of a closed system, under environmental conditions, a low-cost culture medium for mixotrophic metabolism and harvest by gravitational sedimentation, a prototype of a flat photobioreactor with a settler manufactured with common materials, the Tetradesmus dimorphus strain, was grown in previously disinfected eutrophicated lagoon water under natural conditions of radiation and temperature for 15 days. A productivity of 0.016 g/L/day was obtained, the harvest yield was 76 ± 0.95 % in 24 hours, and 23.6 % nitrate and 7.2 % COD were removed. Fourier transform infrared spectroscopy (FTIR) analysis of the produced biomass confirmed the presence of lipids, carbohydrates and proteins, while the extracted oils contained phospholipids and carboxylic acids.


Keywords

Microalgae, Tetradesmus dimorphus, photobioreactor, flat panel, gravitational sedimentation.


References

  • Ahmad, I., Abdullah, N., Koji, I., Yuzir, A., and Eva Muhammad, S. (2021). Evolution of Photobioreactors: A Review based on Microalgal Perspective. IOP Conference Series: Materials Science and Engineering, 1142(1), 012004. https://doi.org/10.1088/1757-899x/1142/1/012004
  • Arif, M., Li, Y., El-Dalatony, M. M., Zhang, C., Li, X., and Salama, E. S. (2021). A complete characterization of microalgal biomass through FTIR/TGA/CHNS analysis: An approach for biofuel generation and nutrients removal. Renewable Energy, 163, 1973–1982. https://doi.org/10.1016/j.renene.2020.10.066
  • Ashok, V., Shriwastav, A., Bose, P., and Gupta, S. K. (2019). Phycoremediation of wastewater using algal-bacterial photobioreactor: Effect of nutrient load and light intensity. Bioresource Technology Reports, 7, 100205. https://doi.org/10.1016/j.biteb.2019.100205
  • Ayatollahi, S. Z., Esmaeilzadeh, F., and Mowla, D. (2020). Integrated CO2 capture, nutrients removal and biodiesel production using Chlorella vulgaris. Journal of Environmental Chemical Engineering, 9(2), 104763. https://doi.org/10.1016/j.jece.2020.104763
  • Borja-Aragón, J. L. ., Rodríguez -De La Garza, J. A. ., Ríos-González, L. J. ., Garza-García, Y., Rodríguez-Garza, M. M. ., and Martínez-Amador, S. Y. (2017). Domestic wastewater treatment using Chlorella vulgaris in an airlift bioreactor. Mexican Journal of Biotechnology, 2(2), 40–52. https://doi.org/10.29267/mxjb.2017.2.2.40
  • C. Esther Elizabeth Grace, P. Kiruthika Lakshmi, S. Meenakshi, Vaidyanathan, S., S. Srisudha, and M. Briget Mary. (2020). Biomolecular transitions and lipid accumulation in green microalgae monitored by FTIR and Raman analysis. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 224, 117382. https://doi.org/10.1016/j.saa.2019.117382
  • Chandra Dev Goswami, R and Kalita M.C. (2011). Scenedesmus dimorphus and Scenedesmus quadricauda two potent indigenous microalgae strains for biomass production and CO2 mitigation. J. Algal Biomass Utln., 2(4), 42–49. https://pdfs.semanticscholar.org/9874/6c87fce372e744d9ba4071fb23867f6abd7d.pdf
  • Chen, C. Y., Chang, Y. H., and Chang, H. Y. (2016). Outdoor cultivation of Chlorella vulgaris FSP-E in vertical tubular-type photobioreactors for microalgal protein production. Algal Research, 13, 264–270. https://doi.org/10.1016/j.algal.2015.12.006
  • Chen, M., He, W., Choi, I., and Hur, J. (2016). Tracking the monthly changes of dissolved organic matter composition in a newly constructed reservoir and its tributaries during the initial impounding period. Environmental Science and Pollution Research, 23(2), 1274–1283. https://doi.org/10.1007/s11356-015-5350-5
  • Chng, L. M., Lee, K. T., and Chan, D. J. C. (2017). Synergistic effect of pretreatment and fermentation process on carbohydrate-rich Scenedesmus dimorphus for bioethanol production. Energy Conversion and Management, 141, 410–419. https://doi.org/10.1016/j.enconman.2016.10.026
  • De Souza, L., Lima, A. S., Matos, Â. P., Wheeler, R. M., Bork, J. A., Vieira Cubas, A. L., and Moecke, E. H. S. (2021). Biopolishing sanitary landfill leachate via cultivation of lipid-rich Scenedesmus microalgae. Journal of Cleaner Production, 303. https://doi.org/10.1016/j.jclepro.2021.127094
  • Dilek (Yalcin), D., Abel U., U., Tulay (Baykal), O., Aydin, A., Ilkay (Acikgoz), E., Kazin, Y., and  Deniz, G. (2012). Fourier transform infrared (FTIR) spectroscopy for identification of Chlorella vulgaris Beijerinck 1890 and Scenedesmus obliquus (Turpin) Kützing 1833. African Journal of Biotechnology, 11(16), 3817–3824. https://doi.org/10.5897/ajb11.1863
  • Enamala, M. K., Enamala, S., Chavali, M., Donepudi, J., Yadavalli, R., Kolapalli, B., Aradhyula, T. V., Velpuri, J., qnd Kuppam, C. (2018). Production of biofuels from microalgae - A review on cultivation, harvesting, lipid extraction, and numerous applications of microalgae. Renewable and Sustainable Energy Reviews, 94(May 2017), 49–68. https://doi.org/10.1016/j.rser.2018.05.012
  • Faried, M., Samer, M., Abdelsalam, E., Yousef, R. S., Attia, Y. A., and Ali, A. S. (2017). Biodiesel production from microalgae: Processes, technologies and recent advancements. Renewable Sustainable Energy Reviews. 79(February), 893–913. https://doi.org/10.1016/j.rser.2017.05.199
  • Fazal, T., Mushtaq, A., Rehman, F., Ullah Khan, A., Rashid, N., Farooq, W., Rehman, M. S. U., and Xu, J. (2018). Bioremediation of textile wastewater and successive biodiesel production using microalgae. Renewable Sustainable Energy Reviews. 82, 3107–3126. https://doi.org/10.1016/j.rser.2017.10.029
  • Feng, Y., Li, C., Zhang, D., and Feng, Yujiie, Li, C. Z. D. (2011). Lipid production of Chlorella vulgaris cultured in artificial wastewater medium. Bioresource Technology, 102(1), 101–105. https://doi.org/10.1016/j.biortech.2010.06.016
  • Fernández, D. R. (2017). Agitación y transferencia de masa de CO2 en fotobiorreactores tipo airflit. Revista de Investigación, 10(2), 49–61.
  • Galvan Rincón, I., Sierra Rangel, E. and Venegas Camelo, D. (2014). Diseño conceptual de un biorreactor para producir biocombustibles a partir de microalgas. In Universidad Popular del Cesar (p. 64). https://doi.org/10.1017/CBO9781107415324.004
  • Gonzalez Grijalva, R. D. (2018). Análisis económico de la producción de biomasa a partir de microalgas para biocombustibles en fotobiorreactores a escala piloto. Universidad Internacional SEK.
  • Grobbelaar, J. U. (2013). Mass Production of Microalgae at Optimal Photosynthetic Rates. In Photosynthesis (pp. 357–371). https://doi.org/10.5772/55193
  • Huang, Q., Jiang, F., Wang, L., and Yang, C. (2017). Design of Photobioreactors for Mass Cultivation of Photosynthetic Organisms. Engineering, 3(3), 318–329. https://doi.org/10.1016/J.ENG.2017.03.020
  • Kudahettige, N. P., Pickova, J., and Gentili, F. G. (2018). Stressing algae for biofuel production: Biomass and biochemical composition of Scenedesmus dimorphus and Selenastrum minutum grown in municipal untreated wastewater. Frontiers in Energy Research, 6(DEC), 1–10. https://doi.org/10.3389/fenrg.2018.00132
  • Kumar, N., Banerjee, C., and Jagadevan, S. (2021). Identification, characterization, and lipid profiling of microalgae Scenedesmus sp. NC1, isolated from coal mine effluent with potential for biofuel production. Biotechnology Reports, 30, e00621. https://doi.org/10.1016/j.btre.2021.e00621
  • Lam, T. P., Lee, T. M., Chen, C. Y., and Chang, J. S. (2018). Strategies to control biological contaminants during microalgal cultivation in open ponds. Bioresource Technology, 252, 180–187. https://doi.org/10.1016/j.biortech.2017.12.088
  • Laraib, N., Hussain, A., Javid, A., Bukhari, S. M., Ali, W., Manzoor, M., and Jabeen, F. (2021). Mixotrophic Cultivation of Scenedesmus dimorphus for Enhancing Biomass Productivity and Lipid Yield. Iranian Journal of Science and Technology, Transaction A: Science, 45(2), 397–403. https://doi.org/10.1007/s40995-020-01055-3
  • Leonardi, R. J., Ibañez, M. V., Osella, E. N., and Heinrich, J. M. (2021). Laboratory-scale reproduction of lighting conditions for an outdoor vertical column photobioreactor: Theoretical fundamentals and operation of a programmable LED module. Algal Research, 55(102227), 1–15. https://doi.org/10.1016/j.algal.2021.102227
  • Mamo, T. T., and Mekonnen, Y. S. (2020). Microwave-Assisted Biodiesel Production from Microalgae, Scenedesmus Species, Using Goat Bone–Made Nano-catalyst. Applied Biochemistry and Biotechnology, 190(4), 1147–1162. https://doi.org/10.1007/s12010-019-03149-0
  • Manzoor, M., Ahmad, Q. ul A., Aslam, A., Jabeen, F., Rasul, A., Schenk, P. M., and Qazi, J. I. (2019). Mixotrophic cultivation of Scenedesmus dimorphus in sugarcane bagasse hydrolysate. Environmental Progress and Sustainable Energy, 39(2), 1–9. https://doi.org/10.1002/ep.13334
  • Marinho, Y. F., de Oliveira, A. P. S., Oliveira, C. Y. B., Napoleão, T. H., Guedes Paiva, P. M., de Sant’Anna, M. C. S., Malafaia, C. B., and Gálvez, A. O. (2022). Usage of Moringa oleifera residual seeds promotes efficient flocculation of Tetradesmus dimorphus biomass. Biomass Conversion and Biorefinery, 0123456789. https://doi.org/10.1007/s13399-022-02789-3
  • Martínez Roldan, A. de J., Gómez Lozano, B. P., Díaz Ramírez, M. A., and Ruíz García, M. Á. (2020). Diseño, construcción y puesta en marcha de un fotobbiorreactor flat panel para el cultivo de microalgas. Revista de La Alta Tecnología y La Sociedad, 12(1), 46–53.
  • May-Cua, E. R., Toledano-Thompson, T., Alzate-Gaviria, L. M., and Barahona-Pérez, L. F. (2019). A cylindrical-conical photobioreactor and a sludge drying bed as an efficient system for cultivation of the green microalgae Coelastrum sp. and dry biomass recovery. Revista Mexicana de Ingeniería Química, 18(1), 1–11. https://doi.org/10.24275/UAM/IZT/DCBI/REVMEXINGQUIM/2019V18N1/MAY
  • Murdock, J. N., and Wetzel, D. L. (2009). FT-IR microspectroscopy enhances biological and ecological analysis of algae. Applied Spectroscopy Reviews, 44(4), 335–361. https://doi.org/10.1080/05704920902907440
  • Nguyen, T. T., Uemura, Y., Lam, M. K., Mansor, N., and Lim, J. W. (2019). Revealing the effect of reaction parameters towards alkyl group distribution in in-situ transesterification of Chlorella vulgaris. Energy Conversion and Management, 185, 223–231. https://doi.org/10.1016/j.enconman.2019.01.113
  • Nwoba, E. G., Parlevliet, D. A., Laird, D. W., Vadiveloo, A., Alameh, K., and Moheimani, N. R. (2019). Can solar control infrared blocking films be used to replace evaporative cooling for growth of Nannochloropsis sp. in plate photobioreactors. Algal Research, 39 (January), 101441. https://doi.org/10.1016/j.algal.2019.101441
  • Paladino, O., and Neviani, M. (2021). Airlift photo-bioreactors for Chlorella vulgaris cultivation in closed-loop zero waste biorefineries. Biomass and Bioenergy, 144 (January 2020), 105926. https://doi.org/10.1016/j.biombioe.2020.105926
  • Peña-Solis, K., Soriano-Santos, J., Sánchez C., and Díaz-Godínez, G. (2023). Functional properties and antioxidant activity of protein fractions of Spirulina (Arthrospira maxima). Revista Mexicana de Ingenieíra Química, 22(1), 1–11. https://doi.org/10.24275/rmiq/Bio2967
  • Pereira, F. M., Loures, C. C. A., Amaral, M. S., Gomes, F. M., Pedro, G. A., Machado, M. A. G., Reis, C. E. R., and Silva, M. B. (2018). Evaluation of fatty acids production by Chlorella minutissima in batch bubble-column photobioreactor. Fuel, 230, 155–162. https://doi.org/10.1016/j.fuel.2018.04.170
  • Pérez Bravo, S. G., Castañeda Chávez, M. del R., Aguilera Vázquez, L., Gallardo Rivas, N. V., Morales Rodríguez, M. L., and Páramo García, U. (2023). Evaluation of Scenedesmus dimorphus under Different Photoperiods with Eutrophicated Lagoon Water. Resources, 12(12). https://doi.org/10.3390/resources12120140
  • Raheem, A., Prinsen, P., Vuppaladadiyam, A. K., Zhao, M., and Luque, R. (2018). A review on sustainable microalgae based biofuel and bioenergy production: Recent developments. Journal of Cleaner Production, 181, 42–59. https://doi.org/10.1016/j.jclepro.2018.01.125
  • Ramos Rodríguez, P. A., Milán Hernández, A., Espinosa Melo, E. A., Zumalacárregui de Cárdenas, L. M., Pérez Ones, O., Pérez Ruíz, L., and Piloto-Rodríguez, R. (2018). Caracterización del biodiesel obtenido del aceite de Jatropha curcas L. Afinidad, 75(581), 45–51. https://www.raco.cat/index.php/afinidad/article/view/335962
  • Rashid, N., Rehman, M. S. U., and Han, J. I. (2013). Use of chitosan acid solutions to improve separation efficiency for harvesting of the microalga Chlorella vulgaris. In Chemical Engineering Journal (Vol. 226). Elsevier B.V. https://doi.org/10.1016/j.cej.2013.04.062
  • Rubio Fernández, D., Chica, C., and Parra, M. (2013). Obtención de ácidos grasos a partir de biomasa microalgal cultivada bajo diferentes condiciones de iluminación. Revista Elementos, 3, 111–119.
  • Sacristán-de Alva, M., Luna-Pabello, V. M., Cadena-Martínez, E., and Alva-Martinez, A. F. (2014). Producción de biodiésel a partir de microalgas y una cianobacteria cultivadas en diferentes calidades de agua. Agrociencia, 48(3), 271–284.
  • Sandoval-Herazo, E. J., Espinosa-Reyes, G., Vallejo-Pérez, M. R., Flores-Ramírez, R., Pérez-Vázquez, F., García-Cruz, N. U., and Lizardi-Jiménez, M. A. (2020). Bioreactors for remediation of hydrocarbons in rivers and lagoons of San Luis Potosí. Revista Mexicana de Ingeniería Química, 19(1), 101–110. https://doi.org/https://doi.org/10.24275/rmiq/Bio1470
  • San Pedro, A., González-López, C. V., Acién, F. G., and Molina-Grima, E. (2016). Outdoor pilot production of Nannochloropsis gaditana: Influence of culture parameters and lipid production rates in flat-panel photobioreactors. Algal Research, 18, 156–165. https://doi.org/10.1016/j.algal.2016.06.011
  • Secretaría de Economía, (2012). NMX-AA-030/1-SCFE-2012. Análisis de agua-Medición de la demanda química de oxígeno en aguas naturales, residuales y residuales tratadas. Método de prueba-parte 1-Método de reflujo abierto. Diario Oficial de La Federación, NMX-AA-030/1-SCFI-2012.
  • Sharma, A. K., Sahoo, P. K., Singhal, S., and Joshi, G. (2016). Exploration of upstream and downstream process for microwave assisted sustainable biodiesel production from microalgae Chlorella vulgaris. Bioresource Technology, 216, 793–800. https://doi.org/10.1016/j.biortech.2016.06.013
  • Sharma, T., and Chauhan, R. S. (2016). Comparative transcriptomics reveals molecular components associated with differential lipid accumulation between microalgal sp., Scenedesmus dimorphus and Scenedesmus quadricauda. Algal Research, 19, 109–122. https://doi.org/10.1016/j.algal.2016.07.020
  • Smith, B. (1999). Infrared spectral interpretation. In CRC Press LLC. CRC Press.
  • Srivastava, R. K. (2019). Bio-energy production by contribution of effective and suitable microbial system. Materials Science for Energy Technologies, 2(2), 308–318. https://doi.org/10.1016/j.mset.2018.12.007
  • Stuart, B. H. (2004). Infrared Spectroscopy: Fundamentals and Applications. In Infrared Spectroscopy: Fundamentals and Applications (Vol. 8). John Wiley & Sons. https://doi.org/10.1002/0470011149
  • Tran, D. T., Chen, C. L., and Chang, J. S. (2013). Effect of solvents and oil content on direct transesterification of wet oil-bearing microalgal biomass of Chlorella vulgaris ESP-31 for biodiesel synthesis using immobilized lipase as the biocatalyst. Bioresource Technology, 135, 213–221. https://doi.org/10.1016/j.biortech.2012.09.101
  • Uma Devi, K., Swapna, G., and Suneetha, S. (2014). Microalgae in Bioremediation: Sequestration of Greenhouse Gases, Clearout of Fugitive Nutrient Minerals, and Subtraction of Toxic Elements from Waters. In Microbial Biodegradation and Bioremediation (pp. 436–456). Elsevier Inc. https://doi.org/10.1016/B978-0-12-800021-2.00019-4
  • Wang, B., Lan, C. Q., and Horsman, M. (2012). Closed photobioreactors for production of microalgal biomasses. Biotechnology Advances, 30(4), 904–912. https://doi.org/10.1016/j.biotechadv.2012.01.019
  • Wang, J., Rosov, T., Wensel, P., McGowen, J., and Curtis, W. R. (2016). A preliminary implementation of metabolic-based pH control to reduce CO2 usage in outdoor flat-panel photobioreactor cultivation of Nannochloropsis oceanica microalgae. Algal Research, 18, 288–295. https://doi.org/10.1016/j.algal.2016.07.001
  • Wang, L., Li, Y., Sommerfeld, M., and Hu, Q. (2013). A flexible culture process for production of the green microalga Scenedesmus dimorphus rich in protein, carbohydrate or lipid. Bioresource Technology, 129, 289–295. https://doi.org/10.1016/j.biortech.2012.10.062
  • Xaaldi Kalhor, A., Mohammadi Nassab, A. D., Abedi, E., Bahrami, A., and Movafeghi, A. (2016). Biodiesel production in crude oil contaminated environment using Chlorella vulgaris. Bioresource Technology, 222, 190–194. https://doi.org/10.1016/j.biortech.2016.09.110
  • Xu, X., Shen, Y., and Chen, J. (2015). Cultivation of Scenedesmus dimorphus for C/N/P removal and lipid production. Electronic Journal of Biotechnology, 18(1), 46–50. https://doi.org/10.1016/j.ejbt.2014.12.003
  • Zhang, C., Wu, D. J., and Zhong, C. Q. (2021). Cultivating Scenedesmus dimorphus in lactic acid wastewater for cost-effective biodiesel production. Science of the Total Environment, 792, 148428. https://doi.org/10.1016/j.scitotenv.2021.148428
  • Zhang, Y., Kong, X., Wang, Z., Sun, Y., Zhu, S., Li, L., and Lv, P. (2018). Optimization of enzymatic hydrolysis for effective lipid extraction from microalgae Scenedesmus sp. Renewable Energy, 125, 1049–1057. https://doi.org/10.1016/j.renene.2018.01.078