Vol. 23, No. 3 (2024), Bio24289 https://doi.org/10.24275/rmiq/Bio24289


Production of phytoregulators during anaerobic digestion of bovine and porcine manures


 

Authors

A. Castro-Sierra, T. Espinosa-Solares, E. Houbron, R. Castro-Rivera, B. Y. Azcárraga-Salinas, J. A. Pacheco-Ortíz, M. M. Solís-Oba


Abstract

Phytoregulators intervene in plant physiological processes; currently, the production or synthesis of these compounds has different routes from pure substrates and/or isolated strains, with high costs that make it unaffordable for some sectors. The present research aims to evaluate the production of phytoregulators: indolacetic acid (IAA), gibberellic acid (GA3), abscisic acid (ABA) and kinetin (Kn) during the anaerobic digestion of bovine and porcine manure and their mixture (50: 50) at different digestion times (0, 4, 8, 12, 16, 20, 24, 28 and 32 days) in a completely randomized design, using ANOVAS and Tukey (P<0. 05) with OriginLab software. The results showed that substrate and digestion time influenced the production of phytoregulators: the treatment with bovine manure after 12 days of digestion registered the highest value of IAA (17.95 ± 0. 12 mg/L); to produce GA3, the treatment with manure mixture at 8 days was the most suitable (24.55 ± 3.64 mg/L) and to produce Kn, the porcine manure at 24 days of digestion was the most suitable (9.91 ± 1.98 mg/L); however, ABA production was not recorded in any of the evaluated treatments. Anaerobic digestion of bovine and porcine organic solid wastes can be precursors to produce phytoregulators.


Keywords

phytohormones, indolacetic acid, gibberellic acid, kinetin, sustainable development.


References

  • Aguilar-Benítez, G., Myrna Solís-Oba, M., Castro-Rivera, R., López-Gayou, V., Lara-Ávila, J. P., & Esteves-Luna, M. A. (2020). Efecto de bacterias PGPB, composta y digestato en el rendimiento de materia seca de pasto ovillo. Revista Mexicana de Ciencias Agrícolas, 24, 118-127. https://doi.org/10.29312/remexca.v0i24.2363
  • Albalate-Ramírez, A., Alcalá-Rodríguez, M. M., Miramontes-Martínez, L. R., Estrada-Baltazar, A., Galván-Arzola, U., López-Hernández, B. N., Morones-Ramírez, J. R., & Rivas-García, P. (2023). The importance of substrate formulation on the hydrolysis process in anaerobic digestion: A numerical and experimental study. Revista Mexicana de Ingeniería Química, 22(2), 1-10. https://doi.org/10.24275/rmiq/Bio239
  • Alcántara Cortes, J. S., Acero Godoy, J., Alcántara Cortés, J. D., & Sánchez Mora, R. M. (2019). Principales reguladores hormonales y sus interacciones en el crecimiento vegetal. Nova, 17(32), 109-129.
  • American Public Health Association. (2017). Standard Methods for the Examination of Water and Wastewater (23rd ed.). American Public Health Association.
  • Anukam, A., Mohammadi, A., Naqvi, M., & Granström, K. (2019). A Review of the Chemistry of Anaerobic Digestion: Methods of Accelerating and Optimizing Process Efficiency. Processes, 7(8), 504. https://doi.org/10.3390/pr7080504
  • Atasoy, M., Owusu-Agyeman, I., Plaza, E., & Cetecioglu, Z. (2018). Bio-based volatile fatty acid production and recovery from waste streams: Current status and future challenges. Bioresource Technology, 268, 773-786. https://doi.org/10.1016/j.biortech.2018.07.042
  • Bader, A. N., Salerno, G. L., Covacevich, F., & Consolo, V. F. (2020). Native Trichoderma harzianum strains from Argentina produce indole-3 acetic acid and phosphorus solubilization, promote growth and control wilt disease on tomato (Solanum lycopersicum L.). Journal of King Saud University - Science, 32(1), 867-873. https://doi.org/10.1016/j.jksus.2019.04.002
  • Camacho Céspedes, F., Uribe Lorío, L., Newcomer, Q., Masters, K., Kinyua, M., Camacho Céspedes, F., Uribe Lorío, L., Newcomer, Q., Masters, K., & Kinyua, M. (2019). Fitotoxicidad de compost producido con cultivos de microorganismos de montaña y lodos de biodigestor. Cuadernos de Investigación UNED, 11(2), 75-84. https://doi.org/10.22458/urj.v11i2.2197
  • Camara, M. C., Vandenberghe, L. P. S., Sextos, G. C., Tanobe, V. O. A., Magalhães Junior, A. I., & Soccol, C. R. (2020). Alternative methods for gibberellic acid production, recovery and formulation: A case study for product cost reduction. Bioresource Technology, 309, 123295. https://doi.org/10.1016/j.biortech.2020.123295
  • Castillo-Alfonso, F., Quintana-Menéndez, A., Vigueras-Ramírez, G., Sales-Cruz, A. M., Rosales-Colunga, L. M., & Olivares-Hernández, R. (2022). Analysis of the Propionate Metabolism in Bacillus subtilis during 3-Indolacetic Production. Microorganisms, 10(12), 2352. https://doi.org/10.3390/microorganisms10122352
  • Castro Rivera, R., Solís Oba, M. M., Chicatto Gasperín, V., & Solís Oba, A. (2020). Producción de biogás mediante codigestión de estiércol bovino y residuos de cosecha de tomate (Solanum lycopersicum L.). Revista Internacional de Contaminación Ambiental, 36(3), 529-539. https://doi.org/10.20937/rica.53545
  • Castro-Ramos, J. J., Solís-Oba, M. M., Castro-Rivera, R., & Calderón-Vázquez, C. L. (2022). Evaluación de la digestión anaeróbica para la producción de fitorreguladores. Revista Mexicana de Agroecosistemas, 9(1), 29-35.
  • Chhaya, Yadav, B., Jogawat, A., Gnanasekaran, P., Kumari, P., Lakra, N., Lal, S. K., Pawar, J., & Narayan, O. P. (2021). An overview of recent advancement in phytohormones-mediated stress management and drought tolerance in crop plants. Plant Gene, 25, 100264. https://doi.org/10.1016/j.plgene.2020.100264
  • Escorcia-Ávila, C., Ortiz-Salazar, N., & Polo-Calvo, V. (2020). Construcción de un biodigestor para la generación de biol y biogás a partir de residuos orgánicos. Revista GIPAMA, 2(1), 55-63.
  • González-León, Y., Ortega-Bernal, J., Anducho-Reyes, M. A., & Mercado-Flores, Y. (2022). Bacillus subtilis y Trichoderma: Características generales y su aplicación en la agricultura. TIP Revista Especializada en Ciencias Químico-Biológicas, 25(1), 1-14. https://doi.org/10.22201/fesz.23958723e.2022.520
  • Li, X., Guo, J., Pang, C., & Dong, R. (2016). Anaerobic digestion and storage influence availability of plant hormones in livestock slurry. ACS Sustainable Chemistry & Engineering, 4(3), 719-727. https://doi.org/10.1021/acssuschemeng.5b00586
  • Loreto-Muñoz, C. D., López-Avilés, G., De la Cruz-Leyva, M. C., Martin-García, A. R., & Almendariz-Tapia, F. J. (2024). Sulfidogenic activity related to microbial diversity in a biological system employed for sulfate-rich wastewater treatment. Revista Mexicana de Ingeniería Química, 23(1), 1-11. https://doi.org/10.24275/rmiq/IA24167
  • Lozano Ruíz, A. C., Sánchez Montealegre, C. A., & Ardila Marín, J. G. (2020). Diseño de un biodigestor de excremento para generación de biogás vía simulación con el software SIMBA®. Ingeniería y Región, 24, 72-85. https://doi.org/10.25054/22161325.2779
  • Makian, M., Im, S., Mostafa, A., Prakash, O., Kim, J., Park, C., & Kim, D. H. (2024). Continuous production of high-concentrated ammonia broth through fermentation. Bioresource Technology, 394, 130217. https://doi.org/10.1016/j.biortech.2023.130217
  • Meegoda, J. N., Li, B., Patel, K., & Wang, L. B. (2018). A review of the processes, parameters, and optimization of anaerobic digestion. International Journal of Environmental Research and Public Health, 15(10), 2224. https://doi.org/10.3390/ijerph15102224
  • Montenegro Orozco, K. T., Rojas Carpio, A. S., Cabeza Rojas, I., & Hernández Pardo, M. A. (2016). Potencial de biogás de los residuos agroindustriales generados en el departamento de Cundinamarca. Revista ION, 29(2), 23-37. https://doi.org/10.18273/revion.v29n2-2016002
  • Morozova, I., Nikulina, N., Oechsner, H., Krümpel, J., & Lemmer, A. (2020). Effects of increasing nitrogen content on process stability and reactor performance in anaerobic digestion. Energies, 13(5), 1139. https://doi.org/10.3390/en13051139
  • Mukherjee, A., Gaurav, A. K., Singh, S., Yadav, S., Bhowmick, S., Abeysinghe, S., & Verma, J. P. (2022). The bioactive potential of phytohormones: A review. Biotechnology Reports, 35, e00748. https://doi.org/10.1016/j.btre.2022.e00748
  • Parra-Orobio, B. A., Torres-López, W. A., & Torres-Lozada, P. (2020). Response surface methodology as an optimization tool for anaerobic digestion of food waste. Water, Air, & Soil Pollution, 231(8), 385. https://doi.org/10.1007/s11270-020-04764-y
  • Parra-Orobio, B. A., Torres-Lozada, P., Marmolejo-Rebellón, L. F., Cárdenas-Cleves, L. M., Vásquez-Franco, C., Torres-López, W. A., & Ordoñez-Andrade, J. A. (2015). Efecto de la relación sustrato-inóculo sobre el potencial bioquímico de metano de biorresiduos de origen municipal. Ingeniería, Investigación y Tecnología, 16(4), 515-526. https://doi.org/10.1016/j.riit.2015.09.004
  • Pereira, A. do E. S., Oliveira, H. C., & Fraceto, L. F. (2019). Polymeric nanoparticles as an alternative for application of gibberellic acid in sustainable agriculture: A field study. Scientific Reports, 9(1), 7135. https://doi.org/10.1038/s41598-019-43494-y
  • Rademacher, W. (2015). Plant growth regulators: Backgrounds and uses in plant production. Journal of Plant Growth Regulation, 34(4), 845-872. https://doi.org/10.1007/s00344-015-9541-6
  • Salgado Ortiz, G. S. S. (2020). Valorización energética de residuos agrícolas: Cáscara de plátano, cascarilla de arroz y bagazo de caña mediante procesos de biodigestión y combustión [Tesis de Licenciatura]. Universidad Politécnica Nacional.
  • Scaglia, B., Pognani, M., & Adani, F. (2015). Evaluation of hormone-like activity of the dissolved organic matter fraction (DOM) of compost and digestate. Science of The Total Environment, 514, 314-321. https://doi.org/10.1016/j.scitotenv.2015.02.009
  • Sosa Villalobos, C. (2014). Arranque de un reactor anaerobio, con aguas residuales de destileria de alcohol de caña. Revista Iberoamericana de Ciencias, 1, 199-207.
  • Suárez-Hernández, J., Sosa-Cáceres, R., Martínez-Labrada, Y., Curbelo-Alonso, A., Figueredo-Rodríguez, T., & Cepero-Casas, L. (2018). Evaluación del potencial de producción del biogás en Cuba. Pastos y Forrajes, 41(2), 85-92.
  • Teniza-García, O., Solís-Oba, M. M., Pérez-López, M. E., González-Prieto, J. M., & Valencia-Vázquez, R. (2015). Producción de metano utilizando residuos cunícolas. Revista Mexicana de Ingeniería Química, 14(2), 321-334.
  • Tian-Qiong, S., Hui, P., Si-Yu, Z., Rong-Yu, J., Kun, S., He, H. & Xiao-Jun, J. (2017). Microbial production of plant hormones: Opportunities and challenges. Bioengineered, 8(2), 124-128. https://doi.org/10.1080/21655979.2016.1212138
  • Werle, L. B., Abaide, E. R., Felin, T. H., Kuhn, K. R., Tres, M. V., Zabot, G. L., Kuhn, R. C., Jahn, S. L., & Mazutti, M. A. (2020). Gibberellic acid production from Gibberella fujikuroi using agro-industrial residues. Biocatalysis and Agricultural Biotechnology, 25, 101608. https://doi.org/10.1016/j.bcab.2020.101608
  • Yao, X., Zhou, H., Meng, H., Ding, J., Shen, Y., Cheng, H., Zhang, X., Li, R., & Fan, S. (2021). Amino acid profile characterization during the co-composting of a livestock manure and maize straw mixture. Journal of Cleaner Production, 278, 123494. https://doi.org/10.1016/j.jclepro.2020.123494