Vol. 23, No. 3 (2024), Bio24352 https://doi.org/10.24275/rmiq/Bio24352


Polyhydroxyalkanoates production by Bacillus thuringiensis HA1 using sugarcane molasses as carbon source


 

Authors

J.D. Castilla-Marroquín, N. Pacheco, J.A. Herrera-Corredor, F. Hernández-Rosas, K. Jiménez-Morales, M. J. Benítez-Salamanca, R. Hernández-Martínez


Abstract

Polyhydroxyalkanoates (PHAs) are a biodegradable alternative to conventional plastics. However, their adoption has been limited by high production costs. The use of cheap carbon sources, like by-products from the sugar cane industry, could reduce PHAs production costs. In the present work, the potential of Bacillus thuringiensis HA1 to produce PHAs using commercial sucrose, molasses, and panela as low-cost carbon sources was explored. Single factor experiments were performed to identify the most favorable conditions for PHAs production. Based on the time, temperature and initial pH results, the fixed conditions to evaluate the carbon sources were 36 hours, 33°C and pH7.5, the carbon sources were tested at 50 to 350 g/L for PHAs production. PHAs recovery ratio was higher when using molasses at 300 g/L (61.6% of PHAs/dry cell weight, 2.28 mg/mL/3.72 mg/mL respectively), followed by sucrose (61.5% of PHAs/dry cell weight, 0.4 mg/mL/0.6 mg/mL respectively) at 50 g/L and 36.4% of PHAs/dry cell weight at 300 g/L, and finally using panela 25.8% of PHAs/dry cell (1.08 mg/mL/4.40 mg/mL respectively) recovery ratio was observed. After conducting FT-IR characterization, the samples exhibited similarity to the standard DL-β-hydroxybutyric acid sodium salt


Keywords

biopolymers, polyhydroxyalkanoates, Bacillus thuringiensis, submerged fermentation, carbon sources.


References

  • Aguilar-Rivera, N., and Olvera-Vargas, L. A. (2021). Innovations for Sustainable Production of Traditional and Artisan Unrefined Non-centrifugal Cane Sugar in Mexico. In World sustainability series, (Leal Filho, W., Krasnov, E.V., Gaeva, D.V., eds) Pp. 313–330. Springer, Cham. https://doi.org/10.1007/978-3-030-78825-4_19
  • Aguilar-Rivera, N., Khan, M. T., Khan, I. A., Iqbal, R., and Aslam, M. M. (2022). Sustainable Conversion of Wastes into Green Bioproducts to Introduce Diversification and Green Economy in the Sugar Industry. A Review. Sugar Tech 24(4), 1198-1211. https://doi.org/10.1007/s12355-022-01167-7
  • Alarcón, A. L., Palacios, L. M., Osorio, C., Narváez, P. C., Heredia, F. J., Orjuela, A., and Hernanz, D. (2021). Chemical characteristics and colorimetric properties of non-centrifugal cane sugar (“panela”) obtained via different processing technologies. Food Chemistry 340, 128183. https://doi.org/10.1016/j.foodchem.2020.128183
  • Balada, C., Díaz, V., Castro, M., Echeverría-Bugueño, M., Marchant, M., and Guzmán, L. (2022). Chemistry and bioactivity of microsorum scolopendria (polypodiaceae): antioxidant effects on an epithelial damage model. Molecules 27(17), 5467. https://doi.org/10.3390/molecules27175467
  • Bedade, D., Edson, C., and Gross, R. (2021). Emergent approaches to efficient and sustainable polyhydroxyalkanoate production. Molecules 26(11), 3463. https://doi.org/10.3390/molecules26113463
  • Boey, J. Y., Mohamad, L., Khok, Y. S., Tay, G. S., and Baidurah, S. (2021). A review of the applications and biodegradation of polyhydroxyalkanoates and poly(lactic acid) and its composites. Polymers 13(10), 1544. https://doi.org/10.3390/polym13101544
  • Bosco, F., Cirrincione, S., Carletto, R., Marmo, L., Chiesa, F., Mazzoli, R., and Pessione, E. (2021). PHA production from Cheese Whey and “Scotta”: Comparison between a consortium and a pure culture of Leuconostoc mesenteroides. Microorganisms 9(12), 2426. https://doi.org/10.3390/microorganisms9122426
  • Brojanigo, S., Parro, E., Cazzorla, T., Favaro, L., Basaglia, M., and Casella, S. (2020). Conversion of starchy waste streams into polyhydroxyalkanoates using cupriavidus necator dsm 545. Polymers 12(7), 1496. https://doi.org/10.3390/polym12071496
  • Catherine, M. C., Guwy, A., and Massanet-Nicolau, J. (2022). Effect of acetate concentration, temperature, pH and nutrient concentration on polyhydroxyalkanoates (PHA) production by glycogen accumulating organisms. Bioresource Technology Reports 20, 101226. https://doi.org/10.1016/j.biteb.2022.101226
  • Cai, S., Wu, Y., Li, Y., Yang, S., Liu, Z., Ma, Y., and Cai, L. (2021). Production of polyhydroxyalkanoates in unsterilized hyper-saline medium by halophiles using waste silkworm excrement as carbon source. Molecules 26(23), 7122. https://doi.org/10.3390/molecules26237122
  • Chaiwarit, T., Kantrong, N., Sommano, S., Rachtanapun, P., Junmahasathien, T., Kumpugdee-Vollrath, M., and Jantrawut, P. (2021). Extraction of tropical fruit peels and development of HPMC film containing the extracts as an active antibacterial packaging material. Molecules 26(8), 2265. https://doi.org/10.3390/molecules26082265
  • Choi, T., Kim, H., Song, H., Lee, S. M., Park, S. L., Lee, H. S., and Yang, Y. (2021). Fructose-based production of short-chain-length and medium-chain-length polyhydroxyalkanoate copolymer by arctic pseudomonas sp. b14-6. Polymers 13(9), 1398. https://doi.org/10.3390/polym13091398
  • de Paula, C. B. C., de Paula-Elias, F. C., Rodrigues, M. N., Coelho, L. F., de Oliveira, N. M. L., de Almeida, A. F., and Contiero, J. (2021). Polyhydroxyalkanoate Synthesis by Burkholderia glumae into a sustainable sugarcane biorefinery concept. Frontiers in Bioengineering and Biotechnology 8, 631284. https://doi.org/10.3389/fbioe.2020.631284
  • Demir, T. (2021). Effects of green tea powder, pomegranate peel powder, epicatechin and punicalagin additives on antimicrobial, antioxidant potential and quality properties of raw meatballs. Molecules 26(13), 4052. https://doi.org/10.3390/molecules26134052
  • Eliodório, K. P., De Gois E Cunha, G. C., De Oliveira Lino, F. S., Sommer, M. O. A., Gombert, A. K., Giudici, R., & Basso, T. O. (2023). Physiology of Saccharomyces cerevisiae during growth on industrial sugar cane molasses can be reproduced in a tailor-made defined synthetic medium. Scientific Reports 13(1). https://doi.org/10.1038/s41598-023-37618-8
  • Ferrari, F., Striani, R., Fico, D., Alam, M., Greco, A., and Corcione, C. (2022). An overview on wood waste valorization as biopolymers and biocomposites: definition, classification, production, properties and applications. Polymers 14(24), 5519. https://doi.org/10.3390/polym14245519
  • Formann, S., Hahn, A., Janke, L., Stinner, W., Sträuber, H., Logroño, W., and Nikolausz, M. (2020). Beyond sugar and ethanol production: value generation opportunities through sugarcane residues. Frontiers in Energy Research 8, 579577. https://doi.org/10.3389/fenrg.2020.579577
  • Gayosso-Sánchez, A., Hernández-Martínez, R., Pacheco-López, N., Herrera-Corredor, J., Valdivia-Rivera, S., & Herrera-Pool, I. (2024). Effect of the carbon-nitrogen ratio on the co-production of polyhydroxyalkanoates and exopolysaccharides by Enterobacter soli. Revista Mexicana De Ingeniería Química 23(2), 1–17. https://doi.org/10.24275/rmiq/bio24211
  • Guimarães, T. C., Araújo, E. S., Hernández-Macedo, M. L., & López, J. A. (2022). Polyhydroxyalkanoates: Biosynthesis from alternative carbon sources and analytic methods: A short review. Journal of Polymers and the Environment 30(7), 2669-2684. https://doi.org/10.1007/s10924-022-02403-7
  • Hagagy, N., Saddiq, A., Tag, H., Selim, S., AbdElgawad, H., and Martínez‐Espinosa, R. (2022). Characterization of polyhydroxybutyrate, PHB, synthesized by newly isolated Haloarchaea halolamina spp. Molecules 27(21), 7366. https://doi.org/10.3390/molecules27217366
  • Hernández-Martínez, J. M., Rosario, I. G. D., Bolaños-Reynoso, E., and Méndez-Contreras, J. M. (2024). Anaerobic Fermentation with Lactobacillus acidophilus LA-3 for the Production of Lactic Acid and Protein-Rich Biomass from Waste of the Non-centrifugal Cane Sugar Agroindustry. Sugar Tech. 1-10. https://doi.org/10.1007/s1235502401453-6
  • Idris, S., Rahim, R., Saidin, A., and Amirul, A. (2022). Bioconversion of used transformer oil into polyhydroxyalkanoates by Acinetobacter sp. Strain AAAID-1.5. Polymers 15(1), 97. https://doi.org/10.3390/polym15010097
  • Javaid, H., Nawaz, A., Riaz, N., Mukhtar, H., ul-Haq, I., Shah, K. A., and Murtaza, G. (2020). Biosynthesis of polyhydroxyalkanoates (PHAs) by the valorization of biomass and synthetic waste. Molecules 25(23), 5539. https://doi.org/10.3390/molecules25235539
  • Jiménez-Morales, K., Herrera-Pool, E., Ayora-Talavera, T., Cuevas-Bernardino, J., García-Cruz, U., Pech-Cohuo, S., & Pacheco, N. (2024). Bioactive compounds preservation in functional flour production from Cordia dodecandra A. DC fruit: Impact of drying method and pretreatment. Revista Mexicana De Ingeniería Química 23(2), 1–18. https://doi.org/10.24275/rmiq/alim24200
  • Jung, H. J., Kim, S. H., Shin, N., Oh, S. J., Hwang, J. H., Kim, H. J., and Yang, Y. H. (2023). Polyhydroxybutyrate (PHB) production from sugar cane molasses and tap water without sterilization using novel strain, Priestia sp. YH4. International Journal of Biological Macromolecules 250, 126152. https://doi.org/10.1016/j.ijbiomac.2023.126152
  • Khatami, K., Perez-Zabaleta, M., Owusu-Agyeman, I., and Cetecioglu, Z. (2021). Waste to bioplastics: How close are we to sustainable polyhydroxyalkanoates production?. Waste Management 119, 374-388. https://doi.org/10.1016/j.wasman.2020.10.008
  • Khatami, K., Perez-Zabaleta, M., and Cetecioglu, Z. (2022). Pure cultures for synthetic culture development: Next level municipal waste treatment for polyhydroxyalkanoates production. Journal of Environmental Management 305, 114337. https://doi.org/10.1016/j.jenvman.2021.114337
  • Kingsly, J. S., Chathalingath, N., Parthiban, S. A., Sivakumar, D., Sabtharishi, S., Senniyappan, V., and Gunasekar, A. (2022). Utilization of sugarcane molasses as the main carbon source for the production of polyhydroxyalkanoates from Enterobacter cloacae. Energy Nexus 6, 100071. https://doi.org/10.1016/j.nexus.2022.100071
  • Kojuri, S. A., Issazadeh, K., Heshmatipour, Z., Mirpour, M., and Zarrabi, S. (2021). Production of Bioplastic (Polyhydroxybutyrate) with Local Bacillus megaterium Isolated from Petrochemical Wastewater. Iranian journal of biotechnology 19(3), e2849. https://doi.org/10.30498/ijb.2021.244756.2849
  • Kourmentza, C., Costa, J., Azevedo, Z., Servin, C., Grandfils, C., De Freitas, V., and Reis, M. A. M. (2018). Burkholderia thailandensis as a microbial cell factory for the bioconversion of used cooking oil to polyhydroxyalkanoates and rhamnolipids. Bioresource technology 247, 829–837. https://doi.org/10.1016/j.biortech.2017.09.138
  • Lobiuc, A., Pavăl, N. E., Mangalagiu, I. I., Gheorghiță, R., Teliban, G. C., Amăriucăi-Mantu, D., and Stoleru, V. (2023). Future antimicrobials: Natural and functionalized phenolics. Molecules 28(3), 1114. https://doi.org/10.3390/molecules28031114
  • Mahato, R. P., Kumar, S., and Singh, P. (2023). Production of polyhydroxyalkanoates from renewable resources: A review on prospects, challenges and applications. Archives of Microbiology 205(5), 172. https://doi.org/10.1007/s00203-023-03499-8
  • Mahgoub, S., Qattan, S., Salem, S., Abdelbasit, H., Raafat, M., Ashkan, M., and El-Fattah, H. (2023). Characterization and biodegradation of phenol by pseudomonas aeruginosa and klebsiella variicola strains isolated from sewage sludge and their effect on soybean seeds germination. Molecules 28(3), 1203. https://doi.org/10.3390/molecules28031203
  • Mansoor, Z., Tchuenbou-Magaia, F., Kowalczuk, M., Adamus, G., Manning, G., Parati, M., and Khan, H. R. (2022). Polymers use as mulch films in agriculture—a review of history, problems and current trends. Polymers 14(23), 5062. https://doi.org/10.3390/polym14235062
  • Marciniak, P. and Możejko-Ciesielska, J. (2021). What is new in the field of industrial wastes conversion into polyhydroxyalkanoates by bacteria?. Polymers 13(11), 1731. https://doi.org/10.3390/polym13111731
  • McAdam, B., Brennan Fournet, M., McDonald, P., and Mojicevic, M. (2020). Production of polyhydroxybutyrate (PHB) and factors impacting its chemical and mechanical characteristics. Polymers 12(12), 2908. https://doi.org/10.3390/polym12122908
  • Mok, P., Chuah, J., Najimudin, N., Liew, P., Jong, B. d., and Sudesh, K. (2021). In vivo characterization and application of the PHA synthase from Azotobacter vinelandii for the biosynthesis of polyhydroxyalkanoate containing 4-hydroxybutyrate. Polymers 13(10), 1576. https://doi.org/10.3390/polym13101576
  • Muneer, F., Rasul, I., Qasim, M., Sajid, A., and Nadeem, H. (2022). Optimization, production and characterization of polyhydroxyalkanoate (PHA) from indigenously isolated novel bacteria. Journal of Polymers and the Environment 30(8), 3523-3533. https://doi.org/10.1007/s10924-022-02444-y
  • Narancic, T., Cerrone, F., Beagan, N., and O’Connor, K. E. (2020). Recent advances in bioplastics: application and biodegradation. Polymers 12(4), 920. https://doi.org/10.3390/polym12040920
  • Naser, A. Z., Deiab, I., Defersha, F. M., and Yang, S. (2021). Expanding poly(lactic acid) (PLA) and polyhydroxyalkanoates (PHAs) applications: a review on modifications and effects. Polymers 13(23), 4271. https://doi.org/10.3390/polym13234271
  • National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 23676771, Sodium 3-hydroxybutyrate. Available at: https://pubchem.ncbi.nlm.nih.gov/compound/Sodium-3-hydroxybutyrate. Accessed: July 27, 2024
  • Panaksri, A. and Tanadchangsaeng, N. (2021). Evaluation of 3d-printing scaffold fabrication on biosynthetic medium-chain-length polyhydroxyalkanoate terpolyester as biomaterial-ink. Polymers 13(14), 2222. https://doi.org/10.3390/polym13142222
  • Pérez-Burillo, S., Navajas-Porras, B., López-Maldonado, A., Hinojosa-Nogueira, D., Pastoriza, S., and Rufián-Henares, J. (2021). Green tea and its relation to human gut microbiome. Molecules 26(13), 3907. https://doi.org/10.3390/molecules26133907
  • Pérez, R., Cantera, S., Bordel, S., García-Encina, P. A., and Muñoz, R. (2019). The effect of temperature during culture enrichment on methanotrophic polyhydroxyalkanoate production. International Biodeterioration & Biodegradation 140, 144–151. https://doi.org/10.1016/j.ibiod.2019.04.004
  • Riaz, S., Rhee, K. Y., and Park, S. J. (2021). Polyhydroxyalkanoates (PHAs): biopolymers for biofuel and biorefineries. Polymers 13(2), 253. https://doi.org/10.3390/polym13020253
  • Rodrigues, A. M., Franca, R. D. G., Dionı́sio, M., Sevrin, C., Grandfils, C., Reis, M. A., and Lourenço, N. D. (2022). Polyhydroxyalkanoates from a mixed microbial culture: extraction optimization and polymer characterization. Polymers 14(11), 2155. https://doi.org/10.3390/polym14112155
  • Santos, F., Eichler, P., Machado, G., De Mattia, J., and De Souza, G. (2020). By-products of the sugarcane industry. In Sugarcane biorefinery, technology and perspectives, (F. Santos, S. C. Rabelo, M. de Matos, and P. Eichler, eds), Pp. 21-48. Academic Press, Cambridge. https://doi.org/10.1016/B978-0-12-814236-3.00002-0
  • Shah, S., and Kumar, A. (2021). Production and characterization of polyhydroxyalkanoates from industrial waste using soil bacterial isolates. Brazilian Journal of Microbiology 52, 715-726. https://doi.org/10.1007/s42770-021-00452-z
  • Sirohi, R., Lee, J. S., Yu, B. S., Roh, H., and Sim, S. J. (2021). Sustainable production of polyhydroxybutyrate from autotrophs using CO2 as feedstock: challenges and opportunities. Bioresource technology 341, 125751. https://doi.org/10.1016/j.biortech.2021.125751
  • Sehgal, R., Kumar, A., and Gupta, R. (2023). Bioconversion of Rice Husk as a Potential Feedstock for Fermentation by Priestia megaterium POD1 for the Production of Polyhydroxyalkanoate. Waste and Biomass Valorization 14(11), 3657-3670. https://doi.org/10.1007/s12649-023-02039-1
  • Sen, K. Y., Hussin, M. H., and Baidurah, S. (2019). Biosynthesis of poly (3-hydroxybutyrate) (PHB) by Cupriavidus necator from various pretreated molasses as carbon source. Biocatalysis and Agricultural Biotechnology 17, 51-59. https://doi.org/10.1016/j.bcab.2018.11.006
  • Srivastava, P., Villamil, J., Melero, J. A., Martı́nez, F., and Puyol, D. (2023). Using inorganic acids to stop purple phototrophic bacteria metabolism improves PHA recovery at a large scale. Biomass Conversion and Biorefinery 14, 17693–17703 https://doi.org/10.1007/s13399-023-03810-z
  • Szacherska, K., Oleśkowicz-Popiel, P., Ciesielski, S., and Możejko-Ciesielska, J. (2021). Volatile fatty acids as carbon sources for polyhydroxyalkanoates production. Polymers 13(3), 321. https://doi.org/10.3390/polym13030321
  • Tohme, S., Hacıosmanoğlu, G. G., Eroğlu, M. S., Kasavi, C., Genç, S., Can, Z. S., & Toksoy Oner, E. (2018). Halomonas smyrnensis as a cell factory for co-production of PHB and levan. International Journal of Biological Macromolecules 118, 1238–1246. https://doi:10.1016/j.ijbiomac.2018.06.197 
  • Trakunjae, C., Sudesh, K., Neoh, S. Z., Boondaeng, A., Apiwatanapiwat, W., Janchai, P., & Vaithanomsat, P. (2022). Biosynthesis of P (3HB-co-3HHx) copolymers by a newly engineered strain of Cupriavidus necator PHB− 4/pBBR_CnPro-phaCRp for skin tissue engineering application. Polymers 14(19), 4074. https://doi.org/10.3390/polym14194074
  • Turco, R., Santagata, G., Corrado, I., Pezzella, C., and Di Serio, M. (2021). In vivo and post-synthesis strategies to enhance the properties of PHB-based materials: A review. Frontiers in Bioengineering and Biotechnology 8, 619266. https://doi.org/10.3389/fbioe.2020.619266
  • Vega-Vidaurri, J. A., Hernández-Rosas, F., Ríos-Corripio, M. A., Loeza-Corte, J. M., Rojas-López, M., and Hernández-Martínez, R. (2022). Coproduction of polyhydroxyalkanoates and exopolysaccharide by submerged fermentation using autochthonous bacterial strains. Chemical Papers 76(4), 2419-2429. https://doi.org/10.1007/s11696-021-02046-3
  • Vu, D. H., Wainaina, S., Taherzadeh, M. J., Åkesson, D., and Ferreira, J. A. (2021). Production of polyhydroxyalkanoates (PHAs) by Bacillus megaterium using food waste acidogenic fermentation-derived volatile fatty acids. Bioengineered 12(1), 2480-2498. https://doi.org/10.1080/21655979.2021.1935524
  • Wilkowska, A., Kręgiel, D., Güneşer, O., and Yüceer, Y. (2014). Growth and by-product profiles ofkluyveromyces marxianuscells immobilized in foamed alginate. Yeast 32(1), 217–225. https://doi.org/10.1002/yea.3044