- Aboulayt, A., Onfroy, T., Travert, A., Clet, G., and Maugé, F. (2017). Relationship between phosphate structure and acid-base properties of phosphate-modified zirconia—Application to alcohol dehydration. Applied Catalysis A: General, 530, 193–202. https://doi.org/10.1016/j.apcata.2016.10.030
- Aggarwal, Varinder. K., Vennall, Graham. P., Davey, Paul. N., and Newman, C. (1998). Scandium trifluoromethaneslfonate, an efficient catalyst for the intermolecular carbonyl-ene reaction and the intramolecular cyclisation of citronellal. Tetrahedron Letters, 39(14), 1997–2000. https://doi.org/10.1016/S0040-4039(98)00115-4
- Águila, G., Jiménez, J., Guerrero, S., Gracia, F., Chornik, B., Quinteros, S., and Araya, P. (2009). A novel method for preparing high surface area copper zirconia catalysts. Applied Catalysis A: General, 360(1), 98–105. https://doi.org/10.1016/j.apcata.2009.03.014
- Ahrem, L., Wolf, J., Scholz, G., and Kemnitz, E. (2018). A novel fluoride-doped aluminium oxide catalyst with tunable Brønsted and Lewis acidity. Catalysis Science and Technology, 8(5), 1404–1413. https://doi.org/10.1039/C7CY02257C
- Ali, A. A. M., and Zaki, M. I. (1999). Thermal and spectroscopic studies of polymorphic transitions of zirconia during calcination of sulfated and phosphated Zr(OH)4 precursors of solid acid catalysts. Thermochimica Acta, 336(1–2), 17–25. https://doi.org/10.1016/S0040-6031(99)00113-6
- Anikeev, V. I., Il’ina, I. V., Volcho, K. P., and Salakhutdinov, N. F. (2012). Cyclization of citronellal in a supercritical solvent in a flow reactor in the presence of Al2O3. Russian Journal of Physical Chemistry A, 86(12), 1917–1919. https://doi.org/10.1134/S0036024412120035
- Barrales-Cortés, C., Galván, V. T., Pedro, S. S., and García, T. V. (2011). One pot synthesis of menthol from (±)-citronellal on nickel sulfated zirconia catalysts. Catalysis Today, 172(1), 21–26. https://doi.org/10.1016/j.cattod.2011.05.005
- Ben Nsir, S., Younes, M. K., Rives, A., and Ghorbel, A. (2017). Characterization and reactivity of zirconia-doped phosphate ion catalyst prepared by sol–gel route and mechanistic study of acetic acid esterification by ethanol. Journal of Sol-Gel Science and Technology, 84(2), 349–360. https://doi.org/10.1007/s10971-017-4509-6
- Berteau, P., and Delmon, B. (1989). Modified aluminas: relationship between activity in 1-butanol dehydration and acidity measured by NH3 TPD. Catalysis Today, 5(2), 121–137. https://doi.org/10.1016/0920-5861(89)80020-3
- Boyse, R. A., and Ko, E. I. (1996). Preparation and characterization of zirconia-phosphate aerogels. Catalysis Letters, 38(3–4), 225–230. https://doi.org/10.1007/BF00806573
- Braga, P. R. S., Costa, A. A., de Freitas, E. F., Rocha, R. O., de Macedo, J. L., Araujo, A. S., Dias, J. A., and Dias, S. C. L. (2012). Intramolecular cyclization of (+)-citronellal using supported 12-tungstophosphoric acid on MCM-41. Journal of Molecular Catalysis A: Chemical, 358, 99–105. https://doi.org/10.1016/j.molcata.2012.03.002
- Chuah, G. K., Jaenicke, S., and Xu, T. H. (1999). Acidity of high-surface-area zirconia prepared from different precipitants. Surface and Interface Analysis, 28(1), 131–134. https://doi.org/10.1002/(SICI)1096-9918(199908)28:1<131::AID-SIA634>3.0.CO;2-5
- Chuah, G. K., Liu, S. H., Jaenicke, S., and Harrison, L. J. (2001). Cyclisation of citronellal to isopulegol catalysed by hydrous zirconia and other solid acids. Journal of Catalysis, 200(2), 352–359. https://doi.org/10.1006/jcat.2001.3208
- Clarke, M. L., and France, M. B. (2008). The carbonyl ene reaction. Tetrahedron, 64(38), 9003–9031. https://doi.org/10.1016/j.tet.2008.06.075
- Clearfield, A., Serrette, G. P. D., and Khazi-Syed, A. H. (1994). Nature of hydrous zirconia and sulfated hydrous zirconia. Catalysis Today, 20(2), 295–312. https://doi.org/10.1016/0920-5861(94)80008-1
- Curran Timothy T. (2009). Alder-ene reaction. In Name Reactions for Homologations, Part II (Li Jie Jack, Ed.) Pp. 2–32. Wiley. New Jersey.
- Cvetanović, R. J., and Amenomiya, Y. (1972). A temperature programmed desorption technique for investigation of practical catalysts. Catalysis Reviews, 6(1), 21–48. https://doi.org/10.1080/01614947208078690
- Drago, R. S., and Kob, N. (1997). Acidity and reactivity of sulfated zirconia and metal-doped sulfated zirconia. The Journal of Physical Chemistry B, 101(17), 3360–3364. https://doi.org/10.1021/jp962515b
- Friedrich, M., Ebel, K., and Götz, N. (2009). Method for the production of isopulegol (Patent US7550633B2). In United States Patent Patent (US7550633B2). https://patents.google.com/patent/US7550633
- Fuentes, M., Magraner, J., De Las Pozas, C., Roque-Malherbe, R., Pariente, J. P., and Corma, A. (1989). Cyclization of citronellal to isopulegol by zeolite catalysis. Applied Catalysis, 47(2), 367–374. https://doi.org/10.1016/S0166-9834(00)83242-X
- Fuentes-Ramírez, R., Romero-Ledesma, F. J., Martínez-Rosales, M., and Romero, J. (2006). Dehydration of isopropanol with superacid circonia. Revista Mexicana de Ingeniería Química, 5(1) 79-83.
- Haneda, M., Takamura, K., Doi, Y., Bion, N., and Vivier, L. (2017). Synthesis of ordered porous zirconia containing sulfate ions and evaluation of its surface acidic properties. Journal of Materials Science, 52(10), 5835–5845. https://doi.org/10.1007/s10853-017-0820-4
- Hopp, R., and Brian M. Lawrence. (2006). Natural and synthetic menthol. In Mint: the Genus Mentha (B. M. Lawrence (Ed.), Pp. 371-397. CRC Press. Boca Raton.
- Iwata, T., Okeda, Y., and Hori, Y. (2004). Process for producing isopulegol (Patent US6774269B2). In United States PatentS Patent (US6774269B2). https://patents.google.com/patent/US6774269#patentCitations
- Izato, Y., and Miyake, A. (2015). Thermal decomposition mechanism of ammonium nitrate and potassium chloride mixtures. Journal of Thermal Analysis and Calorimetry, 121(1), 287–294. https://doi.org/10.1007/s10973-015-4739-1
- Jentoft, F. C. (2008). Oxo-anion modified oxides. In Handbook of Heterogeneous Catalysis (G. Ertl, H. Knözinger, and J. Weitkamp, Eds.) Pp. 262-278. Wiley-VCH Verlag GmbH and Co. KGaA. https://doi.org/10.1002/9783527610044.hetcat0014
- Jimeno, C., Miras, J., and Esquena, J. (2013). TiO2(SiO2)x and ZrO2(SiO2)x cryogels as catalysts for the citronellal cyclization to isopulegol. Catalysis Letters, 143(6), 616–623. https://doi.org/10.1007/s10562-013-1007-5
- Kamatou, G. P. P., Vermaak, I., Viljoen, A. M., and Lawrence, B. M. (2013). Menthol: a simple monoterpene with remarkable biological properties. Phytochemistry, 96, 15–25. https://doi.org/10.1016/j.phytochem.2013.08.005
- Katada, N., Endo, J., Notsu, K., Yasunobu, N., Naito, N., and Niwa, M. (2000). Superacidity and catalytic activity of sulfated zirconia. The Journal of Physical Chemistry B, 104(44), 10321–10328. https://doi.org/10.1021/jp002212o
- Kočovský, P., Ahmed, G., Šrogl, J., Malkov, A. V., and Steele, J. (1999). New Lewis-acidic molybdenum (II) and tungsten (II) catalysts for intramolecular carbonyl ene and Prins reactions. Reversal of the stereoselectivity of cyclization of citronellal. The Journal of Organic Chemistry, 64(8), 2765–2775. https://doi.org/10.1021/jo9821675
- Lenardão, E. J., Botteselle, G. V., de Azambuja, F., Perin, G., and Jacob, R. G. (2007). Citronellal as key compound in organic synthesis. Tetrahedron, 63(29), 6671–6712. https://doi.org/10.1016/j.tet.2007.03.159
- Li, C., and Stair, P. C. (1996). Ultraviolet Raman spectroscopy characterization of sulfated zirconia catalysts: fresh, deactivated and regenerated. Catalysis Letters, 36(3–4), 119–123. https://doi.org/10.1007/BF00807606
- Mäki-Arvela, P., Kumar, N., Nieminen, V., Sjöholm, R., Salmi, T., and Murzin, D. Yu. (2004). Cyclization of citronellal over zeolites and mesoporous materials for production of isopulegol. Journal of Catalysis, 225(1), 155–169. https://doi.org/10.1016/j.jcat.2004.03.043
- Matsuhashi, H., and Arata, K. (2006). Adsorption and desorption of small molecules for the characterization of solid acids. Catalysis Surveys from Asia, 10(1), 1–7. https://doi.org/10.1007/s10563-006-9001-1
- Mekhemer, G. A. H. (1998). Characterization of phosphated zirconia by XRD, Raman and IR spectroscopy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 141(2), 227–235. https://doi.org/10.1016/S0927-7757(98)00344-6
- Mikami, K., and Shimizu, M. (1992). Asymmetric ene reactions in organic synthesis. Chemical Reviews, 92(5), 1021–1050. https://doi.org/10.1021/cr00013a014
- Milone, C., Gangemi, C., Neri, G., Pistone, A., and Galvagno, S. (2000). Selective one step synthesis of (−)menthol from (+)citronellal on Ru supported on modified SiO2. Applied Catalysis A: General, 199(2), 239–244. https://doi.org/10.1016/S0926-860X(99)00560-8
- Milone, C., Perri, A., Pistone, A., Neri, G., and Galvagno, S. (2002). Isomerisation of (+)-citronellal over Zn (II) supported catalysts. Applied Catalysis A: General, 233(1–2), 151–157. https://doi.org/10.1016/S0926-860X(02)00136-9
- Miranda-M., C. D., Ramírez-S., A. E., Gaona-Jurado, S., and Vera, C. R. (2015). Superficial effects and catalytic activity of ZrO2–SO42− as a function of the crystal structure. Journal of Molecular Catalysis A: Chemical, 398, 325–335. https://doi.org/10.1016/j.molcata.2014.12.015
- Nakatani, Y., and Kawashima, K. (1978). A highly stereoselective preparation of l-isopulegol. Synthesis, 1978(02), 147–148. https://doi.org/10.1055/s-1978-24696
- Parida, K. M., and Pattnayak, P. K. (1996). Studies on PO3−4/ZrO2. I. Effect of H3PO4 on textural and acidic properties of ZrO2. Journal of Colloid and Interface Science, 182(2), 381–387. https://doi.org/10.1006/jcis.1996.0477
- Parry, E. (1963). An infrared study of pyridine adsorbed on acidic solids. Characterization of surface acidity. Journal of Catalysis, 2(5), 371–379. https://doi.org/10.1016/0021-9517(63)90102-7
- Piña-Victoria, J. C. (2011). Synthesis, characterization and catalytic activity of Ni/ZrO2-PO4 in the citral to menthol conversion (In Spanish). Master of Science (Chemical Engineering) Thesis, Universidad Autónoma Metropolitana. Mexico.
- Rabee, A., Mekhemer, G., Osatiashtiani, A., Isaacs, M., Lee, A., Wilson, K., and Zaki, M. (2017). Acidity-reactivity relationships in catalytic esterification over ammonium sulfate-derived sulfated zirconia. Catalysts, 7(7), 204. https://doi.org/10.3390/catal7070204
- Ravasio, N., Antenori, M., Babudri, F., and Gargano, M. (1997). Intramolecular ene reactions promoted by mixed cogels. In Studies in Surface Science and Catalysis (Vol. 108, pp. 625–632). https://doi.org/10.1016/S0167-2991(97)80959-7
- Sato, T. (2002). The thermal decomposition of zirconium oxyhydroxide. Journal of Thermal Analysis and Calorimetry, 69(1), 255–265. https://doi.org/10.1023/A:1019962428910
- Sekewael, S. J., Pratika, R. A., Hauli, L., Amin, A. K., Utami, M., and Wijaya, K. (2022). Recent progress on sulfated nanozirconia as a solid acid catalyst in the hydrocracking reaction. Catalysts, 12(2), 191. https://doi.org/10.3390/catal12020191
- Shah, A. K., Park, S., Khan, H. A., Bhatti, U. H., Kumar, P., Bhutto, A. W., and Park, Y. H. (2018). Citronellal cyclisation over heteropoly acid supported on modified montmorillonite catalyst: effects of acidity and pore structure on catalytic activity. Research on Chemical Intermediates, 44(4), 2405–2423. https://doi.org/10.1007/s11164-017-3237-4
- Shukla, S., and Seal, S. (2005). Mechanisms of room temperature metastable tetragonal phase stabilization in zirconia. International Materials Reviews, 50(1), 45–64. https://doi.org/10.1179/174328005X14267
- Smitha, V. K., Stria, H., Jacob, J., and Sugunan, S. (2003). Surface properties and catalytic activity of phosphate modified zirconia. Indian Journal of Chemistry, 42(A), 300–304. http://nopr.niscair.res.in/handle/123456789/20586
- Song, X., and Sayari, A. (1996). Sulfated zirconia-based strong solid-acid catalysts: recent progress. Catalysis Reviews, 38(3), 329–412. https://doi.org/10.1080/01614949608006462
- Spielbauer, D., Mekhemer, G. A. H., Riemer, T., Zaki, M. I., and Knözinger, H. (1997). Structure and acidic properties of phosphate-modified zirconia. The Journal of Physical Chemistry B, 101(23), 4681–4688. https://doi.org/10.1021/jp963785x
- Spielbauer, D., Mekhemer, G. A. H., Zaki, M. I., and Knözinger, H. (1996). Acidity of sulfated zirconia as studied by FTIR spectroscopy of adsorbed CO and NH3 as probe molecules. Catalysis Letters, 40(1–2), 71–79. https://doi.org/10.1007/BF00807460
- Srinivasan, R., Keogh, R. A., Milburn, D. R., and Davis, B. H. (1995). Sulfated zirconia catalysts: characterization by TGA/DTA mass spectrometry. Journal of Catalysis, 153(1), 123–130. https://doi.org/10.1006/jcat.1995.1114
- Telalović, S., Ramanathan, A., Ng, J. F., Maheswari, R., Kwakernaak, C., Soulimani, F., Brouwer, H. C., Chuah, G. K., Weckhuysen, B. M., and Hanefeld, U. (2011). On the synergistic catalytic properties of bimetallic mesoporous materials containing aluminum and zirconium: the Prins cyclisation of citronellal. Chemistry - A European Journal, 17(7), 2077–2088. https://doi.org/10.1002/chem.201002909
- Vandichel, M., Vermoortele, F., Cottenie, S., De Vos, D. E., Waroquier, M., and Van Speybroeck, V. (2013). Insight in the activity and diastereoselectivity of various Lewis acid catalysts for the citronellal cyclization. Journal of Catalysis, 305, 118–129. https://doi.org/10.1016/j.jcat.2013.04.017
- Vrbková, E., Prejza, T., Lhotka, M., Vyskočilová, E., and Červený, L. (2021). Fe-modified zeolite BETA as an active catalyst for intramolecular Prins cyclization of citronellal. Catalysis Letters, 151(7), 1993–2003. https://doi.org/10.1007/s10562-020-03456-w
- Vrbková, E., Šteflová, B., Zapletal, M., Vyskočilová, E., and Červený, L. (2020). Tungsten oxide-based materials as effective catalysts in isopulegol formation by intramolecular Prins reaction of citronellal. Research on Chemical Intermediates, 46(9), 4047–4059. https://doi.org/10.1007/s11164-020-04190-z
- Yadav, G. D., and Nair, J. J. (1999). Sulfated zirconia and its modified versions as promising catalysts for industrial processes. Microporous and Mesoporous Materials, 33(1–3), 1–48. https://doi.org/10.1016/S1387-1811(99)00147-X
- Yadav, G. D., and Nair, J. J. (2000). Isomerization of citronellal to isopulegol using eclectically engineered sulfated zirconia−carbon molecular sieve composite catalysts, UDCaT-2. Langmuir, 16(9), 4072–4079. https://doi.org/10.1021/la9911178
- Yongzhong, Z., Yuntong, N., Jaenicke, S., and Chuah, G. (2005). Cyclisation of citronellal over zirconium zeolite beta- a highly diastereoselective catalyst to (±)-isopulegol. Journal of Catalysis, 229(2), 404–413. https://doi.org/10.1016/j.jcat.2004.11.015
- Zhao, Y., Li, W., Zhang, M., and Tao, K. (2002). A comparison of surface acidic features between tetragonal and monoclinic nanostructured zirconia. Catalysis Communications, 3(6), 239–245. https://doi.org/10.1016/S1566-7367(02)00089-4
|