- Abebe, L., Chen, X., & Sobsey, M. (2016). Chitosan Coagulation to Improve Microbial and Turbidity Removal by Ceramic Water Filtration for Household Drinking Water Treatment. Int J Environ Res Public Health, 3(1), 1-11. https://doi.org/10.3390/ijerph13030269
- Abidin, Z. Z., Shamsudin, N. S., Madehi, N., & Sobri, S. (2013). Optimisation of a method to extract the active coagulant agent from Jatropha curcas seeds for use in turbidity removal. Industrial Crops and Products, 41(1), 319-323. https://doi.org/10.1016/j.indcrop.2012.05.003
- Ahmad, A., Abdullah, S., & Hasan, H. (2022). Potential of local plant leaves as natural coagulant for turbidity removal. Environ Sci Pollut Res, 29 (1), 2579–2587. https://doi.org/10.1007/s11356-021-15541-7
- Amran, A., Zaidi, N., Syafiuddin, A., Zhan, L., Bahrodin, M., Mehmood, M., & Boopathy, R. (2021). Potential of Carica papaya Seed-Derived Bio-Coagulant to Remove Turbidity from Polluted Water Assessed through Experimental and Modeling-Based Study. Appl. Sci, 11(12), 1-15. https://doi.org/10.3390/app11125715
- Ben Rebah, F., Mnif, W., & Siddeeg, S. M. (2018). Microbial Flocculants as an Alternative to Synthetic Polymers for Wastewater Treatment: A Review. Symmetry. 10(11), 11-19. https://doi.org/10.3390/sym10110556
- Bodlund, I., Sabarigrisan, K., Chelliah, R., Sankaran, K., & Rajarao, G. K. (2013). Screening of coagulant proteins from plant material in southern India. Water Supply, 13(6), 1478–1485. https://doi.org/10.2166/ws.2013.156
- Bouaouine, O., Bourven, I., Khalil, F., & M., B. (2018). Identification of functional groups of Opuntia ficus-indica involved in coagulation process after its active part extraction. Environ Sci Pollut Res Int, 25(1), 11111-11119. https://doi.org/10.1007/s11356-018-1394-7
- Carrard, N., Foster, T., & Willetts, J. (2019). Groundwater as a Source of Drinking Water in Southeast Asia and the Pacific: A Multi-Country Review of Current Reliance and Resource Concerns. Water, 11(8), 1-20. https://doi.org/10.3390/w11081605
- Cazcarro, I., López-Morales, C. A., & Duchin, F. (2016). The global economic costs of the need to treat polluted water. Economic Systems Research, Taylor & Francis Journals, 28(3), 295-314. https://doi.org/10.1080/09535314.2016.1161600
- Chik, C., Kurniawan, S., & Shukri, Z. (2024). Chitosan coagulant: coagulation/flocculation studies on turbidity removal from aquaculture wastewater by response surface methodology. Int. J. Environ. Sci. Technol, 21(1), 805-816. https://doi.org/10.1007/s13762-023-04989-4
- Choy, S. Y., Prasad, K. N., Wu, T. Y., Raghunandan, M. E., & Ramanan, R. N. (2016). Performance of conventional starches as natural coagulants for turbidity removal. Ecological Engineering, 94(1), 352-364. https://doi.org/10.1016/j.ecoleng.2016.05.082
- Daverey, A., Tiwari, N., & Dutta, K. (2019). Utilization of extracts of Musa paradisica (banana) peels and Dolichos lablab (Indian bean) seeds as low-cost natural coagulants for turbidity removal from water. Environ Sci Pollut Res, 26(1), 34177–34183. https://doi.org/10.1007/s11356-018-3850-9
- Fuente, D., Allaire, M., Jeuland, M., & Whittington, D. (2020). Forecasts of mortality and economic losses from poor water and sanitation in sub-Saharan Africa. PLOS ONE, 15(3), 1-24. https://doi.org/10.1371/journal.pone.0227611
- Gatew, Y., & Worku, A. (2023). Investigation of Pumpkin Seed as a Potential Coagulant for Drinking Water Treatment. Water Conserv Sci Eng, 8(1), 1-13. https://doi.org/10.1007/s41101-023-00208-W
- Getahun, M., Asaithambi, P., Befekadu, A., & Alemayehu, E. (2023). Optimization of indigenous natural coagulants process for nitrate and phosphate removal from wet coffee processing wastewater using response surface methodology: In the case of Jimma Zone Mana district. Case Studies in Chemical and Environmental Engineering. 8(1), 1-11. https://doi.org/10.1016/j.cscee.2023.100370
- Ghodke, P., Sharma, A., Pandey, J., Chen, W., Patel, A., & V, A. (2021). Pyrolysis of sewage sludge for sustainable biofuels and value-added biochar production. J Environ Manage. J Environ Manage, 298(6), 1-9. https://doi.org/10.1016/j.jenvman.2021.113450
- Hadadi, A., Imessaoudene, A., Bollinger, J.-C., Bouzaza, A., Amrane, A., Tahraoui, H., & Mouni, L. (2023). Aleppo pine seeds (Pinus halepensis Mill.) as a promising novel green coagulant for the removal of Congo red dye: Optimization via machine learning algorithm. Journal of Environmental Management, 331(1), 1-13. https://doi.org/10.1016/j.jenvman.2023.117286
- Iber, B. T., Okomoda, V. T., Rozaimah, S. A., & Kasa, N. A. (2021). Eco-friendly approaches to aquaculture wastewater treatment: Assessment of natural coagulants vis-a-vis chitosa. Bioresource Technology Reports. 15(1), 1-9. https://doi.org/10.1016/j.biteb.2021.100702
- Inan-Eroglu, E., & Ayaz, A. (2018). Is aluminum exposure a risk factor for neurological disorders? J Res Med Sci, 23(1), 1-8.https://doi.org/10.4103/jrms.JRMS_921_17
- Instituto Ecuatoriano de Normalización. (2013). Agua. Calidad del Agua. Muestreo. Técnicas de Muestreo. NTE INEN 2176:2013.
- Irnawati, I., Riyanto, S., & Sudibyo Martono, A. R. (2021). The employment of FTIR spectroscopy and chemometrics for the classification and prediction of antioxidant activities of pumpkin seed oils from different origins. Journal of Applied Pharmaceutical Science, 11(5), 100-107. https://doi.org/10.7324/JAPS.2021.110514
- Liu, Z., & Pan, J. (2017). A practical method for extending the biuret assay to protein determination of corn-based products. Food Chemistry, 224(1), 289–293. https://doi.org/10.1016/j.foodchem.2016.12.084
- Mahanna, H., Fouad, M., & Zedan, T. (2023). ffective turbid water treatment using natural eco-friendly coagulants derived from oat and onion seeds. Int. J. Environ. Sci. Technol, 21(1), 4773–4787. https://doi.org/10.1007/s13762-023-05326-5
- McClelland, P. H., Kenney, C. T., Palacardo, F., Roberts, N. L., Luhende, N., Chua, J., . . . Kim, W. J. (2022). Improved Water and Waste Management Practices Reduce Diarrhea Risk in Children under Age Five in Rural Tanzania: A Community-Based, Cross-Sectional Analysis. International Journal of Environmental Research and Public Health, 19(7), 2-18. https://doi.org/10.3390/ijerph19074218
- Nero, B., Nyanzu, B., & Campion, B. (2023). Mine Wastewater Treatment Using Cassia fistula Plant Parts as Bio-coagulants. Water Conserv Sci, 8(11), 1-9. https://doi.org/10.1007/s41101-023-00178-z
- Nhut, H., Hung, N., & Lap, B. (2021). Use of Moringa oleifera seeds powder as bio-coagulants for the surface water treatment. Int. J. Environ. Sci. Technol, 18(1), 2173-2180. https://doi.org/10.1007/s13762-020-02935-2
- Nigussie, Z., & Gabbiye Habtu, N. (2023). Performance evaluation of biocoagulant for the effective removal of turbidity and microbial pathogens from drinking water. J Water Health, 21(9), 1158–1176. https://doi.org/10.2166/wh.2023.059
- Pi, X., Jin, L., Li, Z., Liu, J., Zhang, Y., Wang, L., & Ren, A. (2019). Association between concentrations of barium and aluminum in placental tissues and risk for orofacial clefts. Sci Total Environ, 652(1), 406-412. https://doi.org/10.1016/j.scitotenv.2018.10.262
- Pramanik, B. K., Pramanik, S. K., & Suja, F. (2016). Removal of arsenic and iron removal from drinking water using coagulation and biological treatment. J Water Health, 14(1), 90-96. https://doi.org/10.2166/wh.2015.159
- Putra, R. S., Amri, R. Y., & Ayu, M. (2020). Turbidity removal of synthetic wastewater using biocoagulants based on protein and tannin. AIP Conf. Proc, 2242(1), 1-6. https://doi.org/10.1063/5.0007846
- Putra, R. S., Nasriyanti, D., & Sarkawi, M. (2022). Coagulation activity of liquid extraction of Leucaena leucocephala and Sesbania grandiflora on the removal of turbidity. Open Chemistry,20(1), 1239-1249. https://doi.org/10.1515/chem-2022-0230
- Putri, I. R., & Kusumaningrum, R. (2017). Latent Dirichlet Allocation (LDA) for Sentiment Analysis Toward Tourism Review in Indonesia. Journal of Physics: Conference Series, 801(1), 1-6.
- Rajoria, S., Vashishtha, M., & Sangal, V. (2022). Treatment of electroplating industry wastewater: a review on the various techniques. Environ Sci Pollut Res, 29(1), 72196–72246. https://doi.org/10.1007/s11356-022-18643-y
- Ramavandi, B. (2014). Treatment of water turbidity and bacteria by using a coagulant extracted from Plantago ovata. Water Resources and Industry, 6(1), 36-50. https://doi.org/10.1016/j.wri.2014.07.001
- Rasheed, F., Alkaradaghi, K., & Al-Ansari, N. (2023). The Potential of Moringa oleifera Seed in Water Coagulation-Flocculation Technique to Reduce Water Turbidity. Water Air Soil Pollut, 234(250), 1-16. https://doi.org/10.1007/s11270-023-06238-3
- Rosa, D. P., Evangelista, R. R., Machado, A. L., Sanches, M. A., & Telis-Romero, J. (2021). Water sorption properties of papaya seeds (Carica papaya L.) formosa variety: An assessment under storage and drying conditions. LWT. 138(1), 1-10. https://doi.org/10.1016/j.lwt.2020.110458
- Sharma, S., & Bhattacharya, A. (2017). Drinking water contamination and treatment techniques. Appl. Water Sci, 7(1), 1043–1067. https://doi.org/10.1007/s13201-016-0455-7
- World Health Organization (WHO). (1996). Geneva: World Health Organization (WHO).
|