Vol. 23, No. 3 (2024), IA24334 https://doi.org/10.24275/rmiq/IA24334


Easy and fast functionalization of polypropylene and its efficiency in arsenic (V) removal


 

Authors

M. Molina-Jacinto, R.M. Gómez-Espinosa, D. Arizmendi-Cotero


Abstract

This article presents an easy functionalization of polypropylene with the ability to remove arsenic (V) upon contact with the aqueous solution, retaining it on its surface, being easy to remove, and complying with the WHO limit. Functionalized polypropylene requires 10 minutes of reaction in UV radiation. The maximum removal was 68% of As (V) at an initial concentration of 1 mg/L and 12 hours of contact time. We found that the removal percentage increased with increasing the number of functionalized membranes three in the arsenic solution reaching the removal of 80% of the initial concentration of 48 µg/L, achieving the maximum concentration of As (V) in water established by the WHO.


Keywords

Arsenic (V); grafting polymerization; functionalized polypropylene; Uv irradiation, carboxylic group.


References

  • Ali, I., Asim, M., and Khan, T. A. (2013). Arsenite removal from water by electro-coagulation on zinc-zinc and copper-copper electrodes. International Journal of Environmental Science and Technology, 10(2), 377–384. https://doi.org/10.1007/s13762-012-0113-z
  • Altowayti, W. A. H., Othman, N., Shahir, S., Alshalif, A. F., Al-Gheethi, A. A., AL-Towayti, F. A. H., Saleh, Z. M., and Haris, S. A. (2022). Removal of arsenic from wastewater by using different technologies and adsorbents: a review. In International Journal of Environmental Science and Technology (Vol. 19, Issue 9, pp. 9243–9266). https://doi.org/10.1007/s13762-021-03660-0
  • Armienta, M. A., and Segovia, N. (2008). Arsenic and fluoride in the groundwater of Mexico. Environmental Geochemistry and Health, 30(4), 345–353. https://doi.org/10.1007/s10653-008-9167-8
  • Ateia, M., Helbling, D. E., and Dichtel, W. R. (2020). Best practices for evaluating new materials as adsorbents for water treatment. In ACS Materials Letters (Vol. 2, Issue 11, pp. 1532–1544). American Chemical Society. https://doi.org/10.1021/acsmaterialslett.0c00414
  • Ba, D., and Boyaci, I. H. (2007). Modeling and optimization i: Usability of response surface methodology. Journal of Food Engineering, 78(3), 836–845. https://doi.org/10.1016/j.jfoodeng.2005.11.024
  • Bastida-Vázquez, J., Roa-Morales, G., Gómez-Espinosa, R. M., Balderas-Hernández, P., and Natividad-Rangel, R. (2024). Water treatment applying electrocoagulation and filtration processes with a functionalized membrane of a contaminated water body from San Cayetano de Morelos, Toluca. Revista Mexicana de Ingeniería Química, 23(1). https://doi.org/10.24275/rmiq/IA24164
  • Cabrales-González, A. M., Martínez-Prado, M. A., Núñez-Ramírez, D. M., Meléndez-Sánchez, E. R., Medina-Torres, L., and Parra-Saldivar, R. (2022). Bioleaching of As from mine tailings using an autochthonous Bacillus cereus strain. Revista Mexicana de Ingeniería Química, 21(2). https://doi.org/10.24275/rmiq/Bio2723
  • Chia, R. J. J., Lau, W. J., Yusof, N., Shokravi, H., and Ismail, A. F. (2023). Adsorptive Membranes for Arsenic Removal–Principles, Progress and Challenges. In Separation and Purification Reviews (Vol. 52, Issue 4, pp. 379–399). https://doi.org/10.1080/15422119.2022.2114371
  • Dakhil, I. H., Naser, G. F., and Ali, A. H. (2021). Response Surface Modeling of Arsenic Adsorption by Modified Spent Tea Leaves. IOP Conference Series: Materials Science and Engineering, 1090(1), 012129. https://doi.org/10.1088/1757-899x/1090/1/012129
  • Dávila-Parra, F. A., Plasencia-Jatomea, M., Monge-Amaya, O., Mártin-García, A. R., De La Vega-Olivas, J., and Almendariz-Tapia, F. J. (2022). Influence of initial copper concentration, pH, and cross-linked alginate-chitosan and alginate-chitosan-Aspergillus australensis composite beads on the adsorption capacity and removal efficiency of copper ions. Revista Mexicana de Ingeniería Química, 21(3). https://doi.org/10.24275/rmiq/IA2892
  • Dotto, G. L., and Pinto, L. A. A. (2011). Adsorption of food dyes onto chitosan: Optimization process and kinetic. Carbohydrate Polymers, 84(1), 231–238. https://doi.org/10.1016/j.carbpol.2010.11.028
  • Dzade, N. Y., and De Leeuw, N. H. (2018). Density functional theory characterization of the structures of H3AsO3 and H3AsO4 adsorption complexes on ferrihydrite. Environmental Science: Processes and Impacts, 20(6), 977–987. https://doi.org/10.1039/c7em00608j
  • Erceg, T., Dapčević-Hadnađev, T., Hadnađev, M., and Ristić, I. (2021). Swelling kinetics and rheological behaviour of microwave synthesized poly(acrylamide-co-acrylic acid) hydrogels. Colloid and Polymer Science, 299(1), 11–23. https://doi.org/10.1007/s00396-020-04763-9
  • Fatoki, J. O., and Badmus, J. A. (2022). Arsenic as an environmental and human health antagonist: A review of its toxicity and disease initiation. Journal of Hazardous Materials Advances (Vol. 5). https://doi.org/10.1016/j.hazadv.2022.100052
  • García-García, J. J., Gómez-Espinosa, R. M., Rangel, R. N., Romero, R. R., and Morales, G. R. (2022). New material for arsenic (V) removal based on chitosan supported onto modified polypropylene membrane. Environmental Science and Pollution Research, 29(2), 1909–1916. https://doi.org/10.1007/s11356-021-15725-1
  • Gonzales-Condori, E. G., Avalos-Lopez, G., Gonzales-Condori, J., Mujica-Guzman, A., Teran-Hilares, R., Briceno, G., Quispe-Aviles, J. M., Parra-Ocampo, P. J., and Villanueva-Salas, J. A. (2023). Avocado seed powder residues as a promising bio-adsorbent for color removal from textile waste water. Revista Mexicana de Ingeniería Química, 22(3). https://doi.org/10.24275/rmiq/IA2370
  • Gugushe, A. S., Nqombolo, A., and Nomngongo, P. N. (2019). Application of response surface methodology and desirability function in the optimization of adsorptive remediation of arsenic from acid mine drainage using magnetic nanocomposite: Equilibrium studies and application to real samples.Molecules, 24(9). https://doi.org/10.3390/molecules24091792
  • Hernández-Aguirre, O. A., and Gómez-Espinosa, R. M. (2017). Tratamiento biológico-ultrasónico nueva alternativa en la degradación de polipropileno. Revista Iberoamericana de Polímeros, 18(2), 115–126.
  • Hernández-Aguirre, O. A., Núñez-Pineda, A., Tapia-Tapia, M., and Gómez-Espinosa, R. M. (2016). Surface Modification of Polypropylene Membrane Using Biopolymers with Potential Applications for Metal Ion Removal. Journal of Chemistry, 2016. https://doi.org/10.1155/2016/2742013
  • Himma, N. F., Anisah, S., Prasetya, N., and Wenten, I. G. (2016). Advances in preparation, modification, and application of polypropylene membrane. Journal of Polymer Engineering (Vol. 36, Issue 4, pp. 329–362). https://doi.org/10.1515/polyeng-2015-0112
  • Janićijević, Ž., and Radovanović, F. (2018). Polyethersulfone/poly(acrylic acid) composite hydrogel membrane reservoirs for controlled delivery of cationic drug formulations. Polymer, 147, 56–66. https://doi.org/10.1016/j.polymer.2018.05.065
  • Jasinska-Walc, L., Bouyahyi, M., and Duchateau, R. (2022). Potential of Functionalized Polyolefins in a Sustainable Polymer Economy: Synthetic Strategies and Applications. Accounts of Chemical Research, 55(15), 1985–1996. https://doi.org/10.1021/acs.accounts.2c00195
  • Karimifard, S., and Alavi Moghaddam, M. R. (2018). Application of response surface methodology in physicochemical removal of dyes from wastewater: A critical review. Science of the Total Environment (Vols 640–641, pp. 772–797).https://doi.org/10.1016/j.scitotenv.2018.05.355
  • Knappett, P. S. K., Li, Y., Loza, I., Hernandez, H., Avilés, M., Haaf, D., Majumder, S., Huang, Y., Lynch, B., Piña, V., Wang, J., Winkel, L., Mahlknecht, J., Datta, S., Thurston, W., Terrell, D., and Kirk Nordstrom, D. (2020). Rising arsenic concentrations from dewatering a geothermally influenced aquifer in central Mexico. Water Research, 185. https://doi.org/10.1016/j.watres.2020.116257
  • Kouwonou, Y., Malaisamy, R., and Jones, K. L. (2008). Modification of PES membrane: Reduction of biofouling and improved flux recovery. Separation Science and Technology, 43(16), 4099–4112. https://doi.org/10.1080/01496390802414726
  • Lee, C. G., Alvarez, P. J. J., Nam, A., Park, S. J., Do, T., Choi, U. S., and Lee, S. H. (2017). Arsenic(V) removal using an amine-doped acrylic ion exchange fiber: Kinetic, equilibrium, and regeneration studies. Journal of Hazardous Materials, 325, 223–229. https://doi.org/10.1016/j.jhazmat.2016.12.003
  • Lu, P., and Zhu, C. (2011). Arsenic Eh-pH diagrams at 25°C and 1 bar. Environmental Earth Sciences, 62(8), 1673–1683. https://doi.org/10.1007/s12665-010-0652-x
  • Mahlknecht, J., Aguilar-Barajas, I., Farias, P., Knappett, P. S. K., Torres-Martínez, J. A., Hoogesteger, J., Lara, R. H., Ramírez-Mendoza, R. A., and Mora, A. (2023). Hydrochemical controls on arsenic contamination and its health risks in the Comarca Lagunera region (Mexico): Implications of the scientific evidence for public health policy. Science of the Total Environment, 857. https://doi.org/10.1016/j.scitotenv.2022.159347
  • Makvandi, P., Iftekhar, S., Pizzetti, F., Zarepour, A., Zare, E. N., Ashrafizadeh, M., Agarwal, T., Padil, V. V. T., Mohammadinejad, R., Sillanpaa, M., Maiti, T. K., Perale, G., Zarrabi, A., and Rossi, F. (2021). Functionalization of polymers and nanomaterials for water treatment, food packaging, textile and biomedical applications: a review. In Environmental Chemistry Letters (Vol. 19, Issue 1, pp. 583–611). https://doi.org/10.1007/s10311-020-01089-4
  • Meza-González, B., Molina-Jacinto, M., Brito-Flores, L., Cortes-Guzman, F., and Gómez-Espinosa, R. M. (2024). Interaction between chitosan and arsenic acid. Chemical Physics, 582. https://doi.org/10.1016/j.chemphys.2024.112276
  • Miller, D. J., Dreyer, D. R., Bielawski, C. W., Paul, D. R., and Freeman, B. D. (2017). Surface Modification of Water Purification Membranes. Angewandte Chemie - International Edition (Vol. 56, Issue 17, pp. 4662–4711). https://doi.org/10.1002/anie.201601509
  • Mishra, A. K., and Ramaprabhu, S. (2011). Functionalized graphene sheets for arsenic removal and desalination of sea water. Desalination, 282, 39–45. https://doi.org/10.1016/j.desal.2011.01.038
  • Mondal, P., Bhowmick, S., Chatterjee, D., Figoli, A., and Van der Bruggen, B. (2013). Remediation of inorganic arsenic in groundwater for safe water supply: A critical assessment of technological solutions. Chemosphere (Vol. 92, Issue 2, pp. 157–170). https://doi.org/10.1016/j.chemosphere.2013.01.097
  • Mondal, R., Pal, S., Bhalani, D. V., Bhadja, V., Chatterjee, U., and Jewrajka, S. K. (2018). Preparation of polyvinylidene fluoride blend anion exchange membranes via non-solvent induced phase inversion for desalination and fluoride removal. Desalination, 445, 85–94. https://doi.org/10.1016/j.desal.2018.07.032
  • Nicomel, N. R., Leus, K., Folens, K., Van Der Voort, P., and Du Laing, G. (2015). Technologies for arsenic removal from water: Current status and future perspectives. International Journal of Environmental Research and Public Health (Vol. 13, Issue 1). https://doi.org/10.3390/ijerph13010062
  • Nik-Abdul-ghani, N. R., Sulaiman, S. S., Tahreen, A., and Jami, M. S. (2021). Polyether sulfone-graphene oxide-polyvinyl pyrrolidone nanocomposite adsorptive membrane for arsenic removal from wastewater. Journal of Water and Environmental Nanotechnology, 6(2), 121–137. https://doi.org/10.22090/jwent.2021.02.003
  • N. Njoku, C., and K. Otisi, S. (2023). Application of Central Composite Design with Design Expert v13 in Process Optimization. Response Surface Methodology - Research Advances and Applications. https://doi.org/10.5772/intechopen.109704
  • Osuna-Martínez, C. C., Armienta, M. A., Bergés-Tiznado, M. E., and Páez-Osuna, F. (2021). Arsenic in waters, soils, sediments, and biota from Mexico: An environmental review. Science of the Total Environment (Vol. 752). https://doi.org/10.1016/j.scitotenv.2020.142062
  • Palacios-Jaimes, M. L., Cortes-Guzman, F., González-Martínez, D. A., and Gómez-Espinosa, R. M. (2012). Surface modification of polypropylene membrane by acrylate epoxidized soybean oil to be used in water treatment. Journal of Applied Polymer Science, 124(SUPPL. 1). https://doi.org/10.1002/app.35269
  • Pal, P. (2015). Arsenic Removal by Membrane Filtration. Groundwater Arsenic Remediation (pp. 105–177). https://doi.org/10.1016/b978-0-12-801281-9.00004-7
  • Picón, D., Torasso, N., Baudrit, J. R. V., Cerveny, S., and Goyanes, S. (2022). Bio-inspired membranes for adsorption of arsenic via immobilized L-Cysteine in highly hydrophilic electrospun nanofibers. Chemical Engineering Research and Design, 185, 108–118. https://doi.org/10.1016/j.cherd.2022.06.042
  • Purkait, M. K., Sinha, M. K., Mondal, P., and Singh, R. (2018). pH-Responsive Membranes.  Interface Science and Technology (Vol. 25, pp. 39–66). https://doi.org/10.1016/B978-0-12-813961-5.00002-4
  • Rowley, J., and Abu-Zahra, N. H. (2019). Synthesis and characterization of polyethersulfone membranes impregnated with (3-aminopropyltriethoxysilane) APTES-Fe 3 O 4 nanoparticles for As(V) removal from water. Journal of Environmental Chemical Engineering, 7(1). https://doi.org/10.1016/j.jece.2018.102875
  • Sangermano, M., and Razza, N. (2019). Light induced grafting-from strategies as powerful tool for surface modification. Express Polymer Letters, 13(2), 135–145. https://doi.org/10.3144/expresspolymlett.2019.13
  • Shokri, E., Yegani, R., Pourabbas, B., and Kazemian, N. (2016). Preparation and characterization of polysulfone/organoclay adsorptive nanocomposite membrane for arsenic removal from contaminated water. Applied Clay Science, 132–133, 611–620. https://doi.org/10.1016/j.clay.2016.08.011
  • Tchounwou, P. B., Yedjou, C. G., Udensi, U. K., Pacurari, M., Stevens, J. J., Patlolla, A. K., Noubissi, F., and Kumar, S. (2019). State of the science review of the health effects of inorganic arsenic: Perspectives for future research. Environmental Toxicology, 34(2), 188–202. https://doi.org/10.1002/tox.22673
  • Vandenbossche, M., Casetta, M., Jimenez, M., Bellayer, S., and Traisnel, M. (2014). Cysteine-grafted nonwoven geotextile: A new and efficient material for heavy metals sorption - Part A. Journal of Environmental Management, 132, 107–112. https://doi.org/10.1016/j.jenvman.2013.10.027
  • Verma, A., Thakur, S., Mamba, G., Prateek, Gupta, R. K., Thakur, P., and Thakur, V. K. (2020). Graphite modified sodium alginate hydrogel composite for efficient removal of malachite green dye. International Journal of Biological Macromolecules, 148, 1130–1139. https://doi.org/10.1016/j.ijbiomac.2020.01.142
  • Villa-Lojo, M. C., Beceiro-González, E., Alonso-Rodríguez, E., and Prada-Rodríguez, D. (1997). Arsenic speciation in marine sediments: Effects of redox potential and reducing conditions. International Journal of Environmental Analytical Chemistry, 68(3), 377–389. https://doi.org/10.1080/03067319708030502
  • Wang, J. X., Huang, Y. Bin, and Yang, W. T. (2020). Photo-grafting Poly(acrylic acid) onto Poly(lactic acid) Chains in Solution. Chinese Journal of Polymer Science, 38(2), 137–142. https://doi.org/10.1007/s10118-019-2308-y
  • Yang, P., and Yang, W. (2013). Surface chemoselective phototransformation of C-H bonds on organic polymeric materials and related high-tech applications. Chemical Reviews (Vol. 113, Issue 7, pp. 5547–5594). https://doi.org/10.1021/cr300246p
  • Zeng, H., Yu, Y., Wang, F., Zhang, J., and Li, D. (2020). Arsenic(V) removal by granular adsorbents made from water treatment residuals materials and chitosan. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 585. https://doi.org/10.1016/j.colsurfa.2019.124036
  • Zhu, L., Song, H., Wang, G., Zeng, Z., and Xue, Q. (2018). Symmetrical polysulfone/poly(acrylic acid) porous membranes with uniform wormlike morphology and pH responsibility: Preparation, characterization and application in water purification. Journal of Membrane Science, 549, 515–522. https://doi.org/10.1016/j.memsci.2017.12.052