- Ali, I., Asim, M., and Khan, T. A. (2013). Arsenite removal from water by electro-coagulation on zinc-zinc and copper-copper electrodes. International Journal of Environmental Science and Technology, 10(2), 377–384. https://doi.org/10.1007/s13762-012-0113-z
- Altowayti, W. A. H., Othman, N., Shahir, S., Alshalif, A. F., Al-Gheethi, A. A., AL-Towayti, F. A. H., Saleh, Z. M., and Haris, S. A. (2022). Removal of arsenic from wastewater by using different technologies and adsorbents: a review. In International Journal of Environmental Science and Technology (Vol. 19, Issue 9, pp. 9243–9266). https://doi.org/10.1007/s13762-021-03660-0
- Armienta, M. A., and Segovia, N. (2008). Arsenic and fluoride in the groundwater of Mexico. Environmental Geochemistry and Health, 30(4), 345–353. https://doi.org/10.1007/s10653-008-9167-8
- Ateia, M., Helbling, D. E., and Dichtel, W. R. (2020). Best practices for evaluating new materials as adsorbents for water treatment. In ACS Materials Letters (Vol. 2, Issue 11, pp. 1532–1544). American Chemical Society. https://doi.org/10.1021/acsmaterialslett.0c00414
- Ba, D., and Boyaci, I. H. (2007). Modeling and optimization i: Usability of response surface methodology. Journal of Food Engineering, 78(3), 836–845. https://doi.org/10.1016/j.jfoodeng.2005.11.024
- Bastida-Vázquez, J., Roa-Morales, G., Gómez-Espinosa, R. M., Balderas-Hernández, P., and Natividad-Rangel, R. (2024). Water treatment applying electrocoagulation and filtration processes with a functionalized membrane of a contaminated water body from San Cayetano de Morelos, Toluca. Revista Mexicana de Ingeniería Química, 23(1). https://doi.org/10.24275/rmiq/IA24164
- Cabrales-González, A. M., Martínez-Prado, M. A., Núñez-Ramírez, D. M., Meléndez-Sánchez, E. R., Medina-Torres, L., and Parra-Saldivar, R. (2022). Bioleaching of As from mine tailings using an autochthonous Bacillus cereus strain. Revista Mexicana de Ingeniería Química, 21(2). https://doi.org/10.24275/rmiq/Bio2723
- Chia, R. J. J., Lau, W. J., Yusof, N., Shokravi, H., and Ismail, A. F. (2023). Adsorptive Membranes for Arsenic Removal–Principles, Progress and Challenges. In Separation and Purification Reviews (Vol. 52, Issue 4, pp. 379–399). https://doi.org/10.1080/15422119.2022.2114371
- Dakhil, I. H., Naser, G. F., and Ali, A. H. (2021). Response Surface Modeling of Arsenic Adsorption by Modified Spent Tea Leaves. IOP Conference Series: Materials Science and Engineering, 1090(1), 012129. https://doi.org/10.1088/1757-899x/1090/1/012129
- Dávila-Parra, F. A., Plasencia-Jatomea, M., Monge-Amaya, O., Mártin-García, A. R., De La Vega-Olivas, J., and Almendariz-Tapia, F. J. (2022). Influence of initial copper concentration, pH, and cross-linked alginate-chitosan and alginate-chitosan-Aspergillus australensis composite beads on the adsorption capacity and removal efficiency of copper ions. Revista Mexicana de Ingeniería Química, 21(3). https://doi.org/10.24275/rmiq/IA2892
- Dotto, G. L., and Pinto, L. A. A. (2011). Adsorption of food dyes onto chitosan: Optimization process and kinetic. Carbohydrate Polymers, 84(1), 231–238. https://doi.org/10.1016/j.carbpol.2010.11.028
- Dzade, N. Y., and De Leeuw, N. H. (2018). Density functional theory characterization of the structures of H3AsO3 and H3AsO4 adsorption complexes on ferrihydrite. Environmental Science: Processes and Impacts, 20(6), 977–987. https://doi.org/10.1039/c7em00608j
- Erceg, T., Dapčević-Hadnađev, T., Hadnađev, M., and Ristić, I. (2021). Swelling kinetics and rheological behaviour of microwave synthesized poly(acrylamide-co-acrylic acid) hydrogels. Colloid and Polymer Science, 299(1), 11–23. https://doi.org/10.1007/s00396-020-04763-9
- Fatoki, J. O., and Badmus, J. A. (2022). Arsenic as an environmental and human health antagonist: A review of its toxicity and disease initiation. Journal of Hazardous Materials Advances (Vol. 5). https://doi.org/10.1016/j.hazadv.2022.100052
- García-García, J. J., Gómez-Espinosa, R. M., Rangel, R. N., Romero, R. R., and Morales, G. R. (2022). New material for arsenic (V) removal based on chitosan supported onto modified polypropylene membrane. Environmental Science and Pollution Research, 29(2), 1909–1916. https://doi.org/10.1007/s11356-021-15725-1
- Gonzales-Condori, E. G., Avalos-Lopez, G., Gonzales-Condori, J., Mujica-Guzman, A., Teran-Hilares, R., Briceno, G., Quispe-Aviles, J. M., Parra-Ocampo, P. J., and Villanueva-Salas, J. A. (2023). Avocado seed powder residues as a promising bio-adsorbent for color removal from textile waste water. Revista Mexicana de Ingeniería Química, 22(3). https://doi.org/10.24275/rmiq/IA2370
- Gugushe, A. S., Nqombolo, A., and Nomngongo, P. N. (2019). Application of response surface methodology and desirability function in the optimization of adsorptive remediation of arsenic from acid mine drainage using magnetic nanocomposite: Equilibrium studies and application to real samples.Molecules, 24(9). https://doi.org/10.3390/molecules24091792
- Hernández-Aguirre, O. A., and Gómez-Espinosa, R. M. (2017). Tratamiento biológico-ultrasónico nueva alternativa en la degradación de polipropileno. Revista Iberoamericana de Polímeros, 18(2), 115–126.
- Hernández-Aguirre, O. A., Núñez-Pineda, A., Tapia-Tapia, M., and Gómez-Espinosa, R. M. (2016). Surface Modification of Polypropylene Membrane Using Biopolymers with Potential Applications for Metal Ion Removal. Journal of Chemistry, 2016. https://doi.org/10.1155/2016/2742013
- Himma, N. F., Anisah, S., Prasetya, N., and Wenten, I. G. (2016). Advances in preparation, modification, and application of polypropylene membrane. Journal of Polymer Engineering (Vol. 36, Issue 4, pp. 329–362). https://doi.org/10.1515/polyeng-2015-0112
- Janićijević, Ž., and Radovanović, F. (2018). Polyethersulfone/poly(acrylic acid) composite hydrogel membrane reservoirs for controlled delivery of cationic drug formulations. Polymer, 147, 56–66. https://doi.org/10.1016/j.polymer.2018.05.065
- Jasinska-Walc, L., Bouyahyi, M., and Duchateau, R. (2022). Potential of Functionalized Polyolefins in a Sustainable Polymer Economy: Synthetic Strategies and Applications. Accounts of Chemical Research, 55(15), 1985–1996. https://doi.org/10.1021/acs.accounts.2c00195
- Karimifard, S., and Alavi Moghaddam, M. R. (2018). Application of response surface methodology in physicochemical removal of dyes from wastewater: A critical review. Science of the Total Environment (Vols 640–641, pp. 772–797).https://doi.org/10.1016/j.scitotenv.2018.05.355
- Knappett, P. S. K., Li, Y., Loza, I., Hernandez, H., Avilés, M., Haaf, D., Majumder, S., Huang, Y., Lynch, B., Piña, V., Wang, J., Winkel, L., Mahlknecht, J., Datta, S., Thurston, W., Terrell, D., and Kirk Nordstrom, D. (2020). Rising arsenic concentrations from dewatering a geothermally influenced aquifer in central Mexico. Water Research, 185. https://doi.org/10.1016/j.watres.2020.116257
- Kouwonou, Y., Malaisamy, R., and Jones, K. L. (2008). Modification of PES membrane: Reduction of biofouling and improved flux recovery. Separation Science and Technology, 43(16), 4099–4112. https://doi.org/10.1080/01496390802414726
- Lee, C. G., Alvarez, P. J. J., Nam, A., Park, S. J., Do, T., Choi, U. S., and Lee, S. H. (2017). Arsenic(V) removal using an amine-doped acrylic ion exchange fiber: Kinetic, equilibrium, and regeneration studies. Journal of Hazardous Materials, 325, 223–229. https://doi.org/10.1016/j.jhazmat.2016.12.003
- Lu, P., and Zhu, C. (2011). Arsenic Eh-pH diagrams at 25°C and 1 bar. Environmental Earth Sciences, 62(8), 1673–1683. https://doi.org/10.1007/s12665-010-0652-x
- Mahlknecht, J., Aguilar-Barajas, I., Farias, P., Knappett, P. S. K., Torres-Martínez, J. A., Hoogesteger, J., Lara, R. H., Ramírez-Mendoza, R. A., and Mora, A. (2023). Hydrochemical controls on arsenic contamination and its health risks in the Comarca Lagunera region (Mexico): Implications of the scientific evidence for public health policy. Science of the Total Environment, 857. https://doi.org/10.1016/j.scitotenv.2022.159347
- Makvandi, P., Iftekhar, S., Pizzetti, F., Zarepour, A., Zare, E. N., Ashrafizadeh, M., Agarwal, T., Padil, V. V. T., Mohammadinejad, R., Sillanpaa, M., Maiti, T. K., Perale, G., Zarrabi, A., and Rossi, F. (2021). Functionalization of polymers and nanomaterials for water treatment, food packaging, textile and biomedical applications: a review. In Environmental Chemistry Letters (Vol. 19, Issue 1, pp. 583–611). https://doi.org/10.1007/s10311-020-01089-4
- Meza-González, B., Molina-Jacinto, M., Brito-Flores, L., Cortes-Guzman, F., and Gómez-Espinosa, R. M. (2024). Interaction between chitosan and arsenic acid. Chemical Physics, 582. https://doi.org/10.1016/j.chemphys.2024.112276
- Miller, D. J., Dreyer, D. R., Bielawski, C. W., Paul, D. R., and Freeman, B. D. (2017). Surface Modification of Water Purification Membranes. Angewandte Chemie - International Edition (Vol. 56, Issue 17, pp. 4662–4711). https://doi.org/10.1002/anie.201601509
- Mishra, A. K., and Ramaprabhu, S. (2011). Functionalized graphene sheets for arsenic removal and desalination of sea water. Desalination, 282, 39–45. https://doi.org/10.1016/j.desal.2011.01.038
- Mondal, P., Bhowmick, S., Chatterjee, D., Figoli, A., and Van der Bruggen, B. (2013). Remediation of inorganic arsenic in groundwater for safe water supply: A critical assessment of technological solutions. Chemosphere (Vol. 92, Issue 2, pp. 157–170). https://doi.org/10.1016/j.chemosphere.2013.01.097
- Mondal, R., Pal, S., Bhalani, D. V., Bhadja, V., Chatterjee, U., and Jewrajka, S. K. (2018). Preparation of polyvinylidene fluoride blend anion exchange membranes via non-solvent induced phase inversion for desalination and fluoride removal. Desalination, 445, 85–94. https://doi.org/10.1016/j.desal.2018.07.032
- Nicomel, N. R., Leus, K., Folens, K., Van Der Voort, P., and Du Laing, G. (2015). Technologies for arsenic removal from water: Current status and future perspectives. International Journal of Environmental Research and Public Health (Vol. 13, Issue 1). https://doi.org/10.3390/ijerph13010062
- Nik-Abdul-ghani, N. R., Sulaiman, S. S., Tahreen, A., and Jami, M. S. (2021). Polyether sulfone-graphene oxide-polyvinyl pyrrolidone nanocomposite adsorptive membrane for arsenic removal from wastewater. Journal of Water and Environmental Nanotechnology, 6(2), 121–137. https://doi.org/10.22090/jwent.2021.02.003
- N. Njoku, C., and K. Otisi, S. (2023). Application of Central Composite Design with Design Expert v13 in Process Optimization. Response Surface Methodology - Research Advances and Applications. https://doi.org/10.5772/intechopen.109704
- Osuna-Martínez, C. C., Armienta, M. A., Bergés-Tiznado, M. E., and Páez-Osuna, F. (2021). Arsenic in waters, soils, sediments, and biota from Mexico: An environmental review. Science of the Total Environment (Vol. 752). https://doi.org/10.1016/j.scitotenv.2020.142062
- Palacios-Jaimes, M. L., Cortes-Guzman, F., González-Martínez, D. A., and Gómez-Espinosa, R. M. (2012). Surface modification of polypropylene membrane by acrylate epoxidized soybean oil to be used in water treatment. Journal of Applied Polymer Science, 124(SUPPL. 1). https://doi.org/10.1002/app.35269
- Pal, P. (2015). Arsenic Removal by Membrane Filtration. Groundwater Arsenic Remediation (pp. 105–177). https://doi.org/10.1016/b978-0-12-801281-9.00004-7
- Picón, D., Torasso, N., Baudrit, J. R. V., Cerveny, S., and Goyanes, S. (2022). Bio-inspired membranes for adsorption of arsenic via immobilized L-Cysteine in highly hydrophilic electrospun nanofibers. Chemical Engineering Research and Design, 185, 108–118. https://doi.org/10.1016/j.cherd.2022.06.042
- Purkait, M. K., Sinha, M. K., Mondal, P., and Singh, R. (2018). pH-Responsive Membranes. Interface Science and Technology (Vol. 25, pp. 39–66). https://doi.org/10.1016/B978-0-12-813961-5.00002-4
- Rowley, J., and Abu-Zahra, N. H. (2019). Synthesis and characterization of polyethersulfone membranes impregnated with (3-aminopropyltriethoxysilane) APTES-Fe 3 O 4 nanoparticles for As(V) removal from water. Journal of Environmental Chemical Engineering, 7(1). https://doi.org/10.1016/j.jece.2018.102875
- Sangermano, M., and Razza, N. (2019). Light induced grafting-from strategies as powerful tool for surface modification. Express Polymer Letters, 13(2), 135–145. https://doi.org/10.3144/expresspolymlett.2019.13
- Shokri, E., Yegani, R., Pourabbas, B., and Kazemian, N. (2016). Preparation and characterization of polysulfone/organoclay adsorptive nanocomposite membrane for arsenic removal from contaminated water. Applied Clay Science, 132–133, 611–620. https://doi.org/10.1016/j.clay.2016.08.011
- Tchounwou, P. B., Yedjou, C. G., Udensi, U. K., Pacurari, M., Stevens, J. J., Patlolla, A. K., Noubissi, F., and Kumar, S. (2019). State of the science review of the health effects of inorganic arsenic: Perspectives for future research. Environmental Toxicology, 34(2), 188–202. https://doi.org/10.1002/tox.22673
- Vandenbossche, M., Casetta, M., Jimenez, M., Bellayer, S., and Traisnel, M. (2014). Cysteine-grafted nonwoven geotextile: A new and efficient material for heavy metals sorption - Part A. Journal of Environmental Management, 132, 107–112. https://doi.org/10.1016/j.jenvman.2013.10.027
- Verma, A., Thakur, S., Mamba, G., Prateek, Gupta, R. K., Thakur, P., and Thakur, V. K. (2020). Graphite modified sodium alginate hydrogel composite for efficient removal of malachite green dye. International Journal of Biological Macromolecules, 148, 1130–1139. https://doi.org/10.1016/j.ijbiomac.2020.01.142
- Villa-Lojo, M. C., Beceiro-González, E., Alonso-Rodríguez, E., and Prada-Rodríguez, D. (1997). Arsenic speciation in marine sediments: Effects of redox potential and reducing conditions. International Journal of Environmental Analytical Chemistry, 68(3), 377–389. https://doi.org/10.1080/03067319708030502
- Wang, J. X., Huang, Y. Bin, and Yang, W. T. (2020). Photo-grafting Poly(acrylic acid) onto Poly(lactic acid) Chains in Solution. Chinese Journal of Polymer Science, 38(2), 137–142. https://doi.org/10.1007/s10118-019-2308-y
- Yang, P., and Yang, W. (2013). Surface chemoselective phototransformation of C-H bonds on organic polymeric materials and related high-tech applications. Chemical Reviews (Vol. 113, Issue 7, pp. 5547–5594). https://doi.org/10.1021/cr300246p
- Zeng, H., Yu, Y., Wang, F., Zhang, J., and Li, D. (2020). Arsenic(V) removal by granular adsorbents made from water treatment residuals materials and chitosan. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 585. https://doi.org/10.1016/j.colsurfa.2019.124036
- Zhu, L., Song, H., Wang, G., Zeng, Z., and Xue, Q. (2018). Symmetrical polysulfone/poly(acrylic acid) porous membranes with uniform wormlike morphology and pH responsibility: Preparation, characterization and application in water purification. Journal of Membrane Science, 549, 515–522. https://doi.org/10.1016/j.memsci.2017.12.052
|