- Acosta, G., Coy, C., Bourdón, A., & Cuervo, E. (2013). Electrocoagulation as an efficient treatment for the removal of heavy metals in wastewater. Universidad Militar Nueva Granada, 9(2), 306-317. https://doi.org/10.18359/rfcb.389
- Aquarium filter for 40 to 150 gallon tank, U-V fish tank, green clean machine, submersible, powerful pump, 400 GPH canister filter for pond, turtle, saltwater tank
- Awasthi, A., Gandhi, K., & Rayalu, S. (2023). Greywater treatment technologies: A comprehensive review. International Journal of Environmental Science and Technology, 20(5), 1234-1256. https://doi.org/10.1007/s13762-023-04940-7
- Bani-Melhem, K., & Al-Kilani, M. R. (2023). A comparison between iron and mild steel electrodes for the treatment of highly loaded grey water using an electrocoagulation technique. Arabian Journal of Chemistry, 16(10), 105199. https://doi.org/10.1016/j.arabjc.2023.105199
- Bautista Rivera, D. (2020). Proposal with a point of agreement to urge SEMARNAT to modify by CONAGUA NOM-009-CONAGUA-2001 to reduce the flush volume of toilets to 4.5 liters. Retrieved from http://sil.gobernacion.gob.mx/Archivos/Documentos/2020/11/asun_4104957_20201105_1604594383.pdf
- Belaid, Ch., Khadraoui, M., Mseddi, S., Kallel, M., Elleuch, B., & Fauvarque, J. F. (2013). Electrochemical treatment of olive mill wastewater: Treatment extent and effluent phenolic compounds monitoring using some uncommon analytical tools. Journal of Environmental Sciences, 25(1), 220-230. https://doi.org/10.1016/S1001-0742(12)60037-0
- Ben Kacem, S., Clematis, D., Chaâbane Elaoud, S., Barbucci, A., & Panizza, M. (2022). A flexible electrochemical cell setup for pollutant oxidation in a wide electrical conductivity range and its integration with ultrasound. Journal of Water Process Engineering, 46, 102564.https://doi.org/10.1016/j.jwpe.2022.102564
- California State Water Resources Control Board. (2016). Title 22, Division 4. Environmental Health. Standards for the use of recycled water.
- Casado, J., Fornaguera, J., & Galán, M. I. (2006). Pilot scale mineralization of organic acids by electro-Fenton® process plus sunlight exposure. Water Research, 40(13), 2511-2516. https://doi.org/10.1016/j.watres.2006.04.047
- Delgadillo, O., Camacho, A., Pérez, L. F., & Andrade, A. (2010). Wastewater treatment using constructed wetlands. Centro Andino para la Gestión y Uso del Agua (Centro AGUA), edición: Nelson Antequera Durán, Cochabamba – Bolivia.
- Eriksson, E., Auffarth, K., Henze, M., & Ledin, A. (2002). Characteristics of grey wastewater. Urban Water, 4(1), 85-104. https://doi.org/10.1016/S1462-0758(01)00064-4
- Fewtrell, L., & Bartram, J. (Eds.). (2001). Water quality: Guidelines, standards and health. Risk assessment and management for water-related infectious disease. IWA Publishing. Recuperado de http://www.who.int/water_sanitation_health/dwq/whoiwa/en/
- Filali, H., Barsan, N., Souguir, D., Nedeff, V., Tomozei, C., & Hachicha, M. (2022). Greywater as an alternative solution for a sustainable management of water resources—A review. Sustainability, 14(2), 665. https://doi.org/10.3390/su14020665
- Fu, F., & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 92(3), 407-418. https://doi.org/10.1016/j.jenvman.2010.11.011
- Garcia-Segura, S., Ocon, J. D., & Chong, M. N. (2018). Electrochemical oxidation remediation of real wastewater effluents — A review. Process Safety and Environmental Protection, 113, 48-67.https://doi.org/10.1016/j.psep.2017.09.014
- Garduño Lomelí, R. F., Gutiérrez Albarrán, J. R., & Bulnes Petrowitsch, M. M. (2016). Manual for use, operation, maintenance and construction, Washing station with greywater management by subsurface infiltration. SARAR Transformación, S.C. Mexico. Retrieved January 1, 2024, from https://sswm.info/sites/default/files/reference_attachments/GARDU%C3%91O%20et%20al%202016.%20Estaci%C3%B3n%20de%20lavado%20y%20manejo%20de%20aguas%20grises.pdf
- Jefferson, B., Laine, A., Parsons, S., Stephenson, T., & Judd, S. (2000). Technologies for domestic wastewater recycling. Urban Water, 1, 285-292. https://doi.org/10.1016/S1462-0758(00)00030-3
- Karpiscak, M. M., Foster, K. E., & Schmidt, N. (1990). Residential water conservation: Casa del Agua. Water Resources Bulletin, 26(6), 939-946. https://doi.org/10.1111/j.1752-1688.1990.tb01428.x
- Laboratory Tests. DÍA AMBIENTAL Diseño y Asesoría Ambiental. Report No. 24-2605. Retrieved from https://drive.google.com/file/d/1OUKwGkZnH7qOr38Tyt9b6-_aMzmPkkcx/view?usp=sharing
- Laboratory Tests. Lab Sin Servicios Profesionales S.A. de C.V. Retrieved from https://drive.google.com/file/d/1cq-f1frbGzNJPSEkTuuX9WGSozSu3hU9/view?usp=drive_link
- Lakshmipathiraj, P., Bhaskar, R., Raviatul, B., Parvathy, S., & Prabhakar, S. (2008). Removal of Cr (VI) by electrochemical reduction. Separation and Purification Technology, 60(1), 96-102. https://doi.org/10.1016/j.seppur.2007.07.053
- Leal, L., Temmink, H., Zeeman, G., & Buisman, C. (2011). Characterization and anaerobic biodegradability of grey water. Desalination, 270(1-3), 111-115. https://doi.org/10.1016/j.desal.2010.11.029
- Li, F., Wichmann, K., & Otterpohl, R. (2009). Review of the technological approaches for grey water treatment and reuses. Science of The Total Environment, 407(11), 3439-3449. https://doi.org/10.1016/j.scitotenv.2009.02.004
- Linares-Hernández, I., Martínez-Miranda, V., Barrera-Díaz, C., Pavón-Romero, S., Bernal-Martínez, L., & Lugo-Lugo, V. (2011). Oxidation of persistent organic matter in industrial wastewater through electrochemical treatments. Advances in Science and Engineering, 2(1), 21-36. Retrieved from https://www.redalyc.org/articulo.oa?id=323627681003
- Liu, J., Ren, N., Qu, C., Lu, S., Xiang, Y., & Liang, D. (2022). Recent Advances in the Reactor Design for Industrial Wastewater Treatment by Electro-Oxidation Process. Water, 14(22), 3711.https://doi.org/10.3390/w14223711
- Medrano, Z., Medina, J., Galarza, A., Soto, J., & Santoyo, K. (2019). Domestic wastewater treatment system by electrocoagulation. Journal CIM, 7(1), Multidisciplinary Research Colloquium 2019. Orizaba Veracruz.
- Medrano-Hurtado, Z. Y., Medina-Aguirre, J. C., Marcelo-Medrano, H., Castillón-Barraza, A., Zamora-Alarcón, R., Casillas-Lamadrid, M. E., Jumilla-Corral, A. A., & Mayorga-Ortiz, P. (2022). Domestic wastewater treatment system by electrocoagulation using photovoltaic solar energy. Revista Mexicana de Ingeniería Química, 21(2), IA2809. https://doi.org/10.24275/rmiq/IA2809
- Mousset, E., & Hatton, T. A. (2022). Advanced hybrid electro-separation/electro-conversion systems for wastewater treatment, reuse and recovery: Compromise between symmetric and asymmetric constraints. Current Opinion in Electrochemistry, 35, 101105.https://doi.org/10.1016/j.coelec.2022.101105
- Murugananthan, M., Yoshihara, S., Rakuma, T., Uehara, N., & Shirakashi, T. (2007). Electrochemical degradation of 17β-estradiol (E2) at boron-doped diamond (Si/BDD) thin film electrode. Electrochimica Acta, 52(9), 3242-3249. https://doi.org/10.1016/j.electacta.2006.09.073
- Muthukumar, M., Thalamadai, M., & Bhaskar, R. (2007). Electrochemical removal of CI Acid Orange 10 from aqueous solutions. Separation and Purification Technology, 55(2), 198-205. https://doi.org/10.1016/j.seppur.2006.11.014
- National Survey on Energy Consumption in Private Households (ENCEVI) 2018. (2018). Retrieved from https://www.inegi.org.mx/programas/encevi/2018/
- Niño, E. D., & Martínez, N. C. (2013). Study of domestic greywater in three socioeconomic levels of Bogotá. Pontificia Universidad Javeriana Facultad de Ingeniería. Retrieved from http://hdl.handle.net/10554/11139
- Ottosson, J., & Stenström, T. A. (2003). Faecal contamination of greywater and associated microbial risks. Water Research, 37(3), 645-655. http://dx.doi.org/10.1016/S0043-1354(02)00352-4
- Panizza, M., & Cerisola, G. (2001). Removal of organic pollutants from industrial wastewater by electrogenerated Fenton's reagent. Water Research, 35(1), 3987-3992. https://doi.org/10.1016/S0043-1354(01)00135-X
- Pérez Carrión, J. (1980). State of the Art – Coagulation. Centro Panamericano de Ingeniería Sanitaria y Ciencias Ambientales (CEPIS), 1-44.
- Pidou, M., Memon, F. A., Stephenson, T., Jefferson, B., & Jeffrey, P. (2007). Greywater recycling: Treatment options and applications. Proceedings of the Institution of Civil Engineers - Engineering Sustainability, 160(3), 119-131.
- Pinto, G. O., da Silva Junior, L. C. S., Assad, D. B. N., Pereira, S. H., & de Brito Mello, L. C. B. (2021). Trends in global greywater reuse: a bibliometric analysis. Water Science and Technology, 84(10-11), 3257-3276. https://doi.org/10.2166/wst.2021.429
- Qiao, J., & Xiong, Y. (2021). Electrochemical oxidation technology: A review of its application in high-efficiency treatment of wastewater containing persistent organic pollutants. Journal of Water Process Engineering, 44, 102308.https://doi.org/10.1016/j.jwpe.2021.102308
- Reyes López, M. G. (2016). The use of chlorine in domestic wastewater treatment plants: Disinfection and formation of by-products. Master's thesis, Instituto Politécnico Nacional, Centro de Investigación Interdisciplinario para el Desarrollo Integral Regional Unidad Durango. Retrieved from http://repositoriodigital.ipn.mx/handle/123456789/23350
- Salgado, R. J., Güitrón de los Reyes, A., & López, P. M. (2018). Impact Study on the Water Supply Service to the Population of the City of Mexicali for the Supply of Water to the Constellation Brands Brewery and Short and Long-Term Supply Strategy for the Plant (first stage). Instituto Mexicano de Tecnología del Agua (IMTA). Available at: https://agua.org.mx/wp-content/uploads/2019/01/IMTA-Estudio-Impacto-Abastecimiento-CBI.pdf. Accessed: January 01, 2022
- Secretaría de Medio Ambiente y Recursos Naturales, Comisión Nacional del Agua. (1997). Mexican Official Standards, NOM-003-SEMARNAT-1997. Retrieved from http://www.ordenjuridico.gob.mx/Documentos/Federal/wo69207.pdf
- Secretaría de Medio Ambiente y Recursos Naturales. (2022). Mexican Official Standard NOM-002-CONAGUA-2021, Sanitary equipment and accessories. Official Journal of the Federation. Retrieved from https://www.dof.gob.mx/nota_detalle.php?codigo=5672648&fecha=29/11/2022#gsc.tab=0
- Shi, K.-W., Wang, C.-W., & Jiang, S. C. (2018). Quantitative microbial risk assessment of greywater on-site reuse. The Science of The Total Environment, 635(2), 1507-1519. https://doi.org/10.1016/j.scitotenv.2018.04.197
- Solar panel data sheet. Retrieved from http://www.solardesigntool.com/components/module-panel-solar/TrinaSolar/4967/TSM-325PD14/specification-datasheet.html
- Stirling, R., Walker, W. S., Westerhoff, P., & Garcia-Segura, S. (2020). Techno-economic analysis to identify key innovations required for electrochemical oxidation as point-of-use treatment systems. Electrochimica Acta, 338, 135874.https://doi.org/10.1016/j.electacta.2020.135874
- Taqieddin, A., Sarrouf, S., Ehsan, M. F., & Alshawabkeh, A. N. (2023). New insights on designing the next-generation materials for electrochemical synthesis of reactive oxidative species towards efficient and scalable water treatment: A review and perspectives. Journal of Environmental Chemical Engineering, 11(6), 111384.https://doi.org/10.1016/j.jece.2023.111384
- UNESCO World Water Assessment Programme. (2020). United Nations World Water Development Report 2020: Water and Climate Change. Retrieved from https://unesdoc.unesco.org/ark:/48223/pf0000372985
- United Nations. (2015). Transforming our world: the 2030 Agenda for Sustainable Development. Retrieved from https://sdgs.un.org/goals
|