Vol. 23, No. 3 (2024), IA24341 https://doi.org/10.24275/rmiq/IA24341


Evaluation of an electrooxidation and UV system with solar energy for the treatment of washing machine greywater for toilet and urinal discharges


 

Authors

Z.Y. Medrano-Hurtado, A. Marcelo-Medrano, A.A. Jumilla-Corral, P. Mayorga-Ortiz


Abstract

This study addresses the challenges of water scarcity and the need for sustainable water management by developing a system for treating greywater from washing machines using electrooxidation (EO) with titanium and stainless steel electrodes. The integration of photovoltaic solar energy and ultraviolet (UV) radiation enhances disinfection and the degradation of organic contaminants, with the goal of reusing the treated water for toilet and urinal discharges. The system used a high-density polyethylene (HDPE) reactor with a 290 L capacity, equipped with four electrodes powered by three 100 W solar panels. Key parameters such as current density (j) and treatment time were evaluated by monitoring turbidity, conductivity, and pH of the water. The optimal operating condition was determined to be at a j of 5.87 A⁄m² and a treatment time of 30 min, achieving a reduction in turbidity from 12.3 NTU to 7.72 NTU, conductivity (σ) from 2,130 μS⁄cm to 2,000 μS⁄cm, and a final pH of 7.99 U. The results demonstrate that the EO process, combined with photovoltaic solar energy and UV radiation, is an efficient and sustainable solution for greywater treatment, enabling reuse and contributing to water resource conservation.


Keywords

greywater treatment, washing machine, toilet, electrooxidation process, photovoltaic solar energy, ultraviolet radiation.


References

  • Acosta, G., Coy, C., Bourdón, A., & Cuervo, E. (2013). Electrocoagulation as an efficient treatment for the removal of heavy metals in wastewater. Universidad Militar Nueva Granada, 9(2), 306-317. https://doi.org/10.18359/rfcb.389
  • Aquarium filter for 40 to 150 gallon tank, U-V fish tank, green clean machine, submersible, powerful pump, 400 GPH canister filter for pond, turtle, saltwater tank
  • Awasthi, A., Gandhi, K., & Rayalu, S. (2023). Greywater treatment technologies: A comprehensive review. International Journal of Environmental Science and Technology, 20(5), 1234-1256. https://doi.org/10.1007/s13762-023-04940-7
  • Bani-Melhem, K., & Al-Kilani, M. R. (2023). A comparison between iron and mild steel electrodes for the treatment of highly loaded grey water using an electrocoagulation technique. Arabian Journal of Chemistry, 16(10), 105199. https://doi.org/10.1016/j.arabjc.2023.105199
  • Bautista Rivera, D. (2020). Proposal with a point of agreement to urge SEMARNAT to modify by CONAGUA NOM-009-CONAGUA-2001 to reduce the flush volume of toilets to 4.5 liters. Retrieved from http://sil.gobernacion.gob.mx/Archivos/Documentos/2020/11/asun_4104957_20201105_1604594383.pdf
  • Belaid, Ch., Khadraoui, M., Mseddi, S., Kallel, M., Elleuch, B., & Fauvarque, J. F. (2013). Electrochemical treatment of olive mill wastewater: Treatment extent and effluent phenolic compounds monitoring using some uncommon analytical tools. Journal of Environmental Sciences, 25(1), 220-230. https://doi.org/10.1016/S1001-0742(12)60037-0
  • Ben Kacem, S., Clematis, D., Chaâbane Elaoud, S., Barbucci, A., & Panizza, M. (2022). A flexible electrochemical cell setup for pollutant oxidation in a wide electrical conductivity range and its integration with ultrasound. Journal of Water Process Engineering, 46, 102564.https://doi.org/10.1016/j.jwpe.2022.102564
  • California State Water Resources Control Board. (2016). Title 22, Division 4. Environmental Health. Standards for the use of recycled water.
  • Casado, J., Fornaguera, J., & Galán, M. I. (2006). Pilot scale mineralization of organic acids by electro-Fenton® process plus sunlight exposure. Water Research, 40(13), 2511-2516. https://doi.org/10.1016/j.watres.2006.04.047
  • Delgadillo, O., Camacho, A., Pérez, L. F., & Andrade, A. (2010). Wastewater treatment using constructed wetlands. Centro Andino para la Gestión y Uso del Agua (Centro AGUA), edición: Nelson Antequera Durán, Cochabamba – Bolivia.
  • Eriksson, E., Auffarth, K., Henze, M., & Ledin, A. (2002). Characteristics of grey wastewater. Urban Water, 4(1), 85-104. https://doi.org/10.1016/S1462-0758(01)00064-4
  • Fewtrell, L., & Bartram, J. (Eds.). (2001). Water quality: Guidelines, standards and health. Risk assessment and management for water-related infectious disease. IWA Publishing. Recuperado de http://www.who.int/water_sanitation_health/dwq/whoiwa/en/
  • Filali, H., Barsan, N., Souguir, D., Nedeff, V., Tomozei, C., & Hachicha, M. (2022). Greywater as an alternative solution for a sustainable management of water resources—A review. Sustainability, 14(2), 665. https://doi.org/10.3390/su14020665
  • Fu, F., & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 92(3), 407-418. https://doi.org/10.1016/j.jenvman.2010.11.011
  • Garcia-Segura, S., Ocon, J. D., & Chong, M. N. (2018). Electrochemical oxidation remediation of real wastewater effluents — A review. Process Safety and Environmental Protection, 113, 48-67.https://doi.org/10.1016/j.psep.2017.09.014
  • Garduño Lomelí, R. F., Gutiérrez Albarrán, J. R., & Bulnes Petrowitsch, M. M. (2016). Manual for use, operation, maintenance and construction, Washing station with greywater management by subsurface infiltration. SARAR Transformación, S.C. Mexico. Retrieved January 1, 2024, from https://sswm.info/sites/default/files/reference_attachments/GARDU%C3%91O%20et%20al%202016.%20Estaci%C3%B3n%20de%20lavado%20y%20manejo%20de%20aguas%20grises.pdf
  • Jefferson, B., Laine, A., Parsons, S., Stephenson, T., & Judd, S. (2000). Technologies for domestic wastewater recycling. Urban Water, 1, 285-292. https://doi.org/10.1016/S1462-0758(00)00030-3
  • Karpiscak, M. M., Foster, K. E., & Schmidt, N. (1990). Residential water conservation: Casa del Agua. Water Resources Bulletin, 26(6), 939-946. https://doi.org/10.1111/j.1752-1688.1990.tb01428.x
  • Laboratory Tests. DÍA AMBIENTAL Diseño y Asesoría Ambiental. Report No. 24-2605. Retrieved from https://drive.google.com/file/d/1OUKwGkZnH7qOr38Tyt9b6-_aMzmPkkcx/view?usp=sharing
  • Laboratory Tests. Lab Sin Servicios Profesionales S.A. de C.V. Retrieved from https://drive.google.com/file/d/1cq-f1frbGzNJPSEkTuuX9WGSozSu3hU9/view?usp=drive_link
  • Lakshmipathiraj, P., Bhaskar, R., Raviatul, B., Parvathy, S., & Prabhakar, S. (2008). Removal of Cr (VI) by electrochemical reduction. Separation and Purification Technology, 60(1), 96-102. https://doi.org/10.1016/j.seppur.2007.07.053
  • Leal, L., Temmink, H., Zeeman, G., & Buisman, C. (2011). Characterization and anaerobic biodegradability of grey water. Desalination, 270(1-3), 111-115. https://doi.org/10.1016/j.desal.2010.11.029
  • Li, F., Wichmann, K., & Otterpohl, R. (2009). Review of the technological approaches for grey water treatment and reuses. Science of The Total Environment, 407(11), 3439-3449. https://doi.org/10.1016/j.scitotenv.2009.02.004
  • Linares-Hernández, I., Martínez-Miranda, V., Barrera-Díaz, C., Pavón-Romero, S., Bernal-Martínez, L., & Lugo-Lugo, V. (2011). Oxidation of persistent organic matter in industrial wastewater through electrochemical treatments. Advances in Science and Engineering, 2(1), 21-36. Retrieved from https://www.redalyc.org/articulo.oa?id=323627681003
  • Liu, J., Ren, N., Qu, C., Lu, S., Xiang, Y., & Liang, D. (2022). Recent Advances in the Reactor Design for Industrial Wastewater Treatment by Electro-Oxidation Process. Water, 14(22), 3711.https://doi.org/10.3390/w14223711
  • Medrano, Z., Medina, J., Galarza, A., Soto, J., & Santoyo, K. (2019). Domestic wastewater treatment system by electrocoagulation. Journal CIM, 7(1), Multidisciplinary Research Colloquium 2019. Orizaba Veracruz.
  • Medrano-Hurtado, Z. Y., Medina-Aguirre, J. C., Marcelo-Medrano, H., Castillón-Barraza, A., Zamora-Alarcón, R., Casillas-Lamadrid, M. E., Jumilla-Corral, A. A., & Mayorga-Ortiz, P. (2022). Domestic wastewater treatment system by electrocoagulation using photovoltaic solar energy. Revista Mexicana de Ingeniería Química, 21(2), IA2809. https://doi.org/10.24275/rmiq/IA2809
  • Mousset, E., & Hatton, T. A. (2022). Advanced hybrid electro-separation/electro-conversion systems for wastewater treatment, reuse and recovery: Compromise between symmetric and asymmetric constraints. Current Opinion in Electrochemistry, 35, 101105.https://doi.org/10.1016/j.coelec.2022.101105
  • Murugananthan, M., Yoshihara, S., Rakuma, T., Uehara, N., & Shirakashi, T. (2007). Electrochemical degradation of 17β-estradiol (E2) at boron-doped diamond (Si/BDD) thin film electrode. Electrochimica Acta, 52(9), 3242-3249. https://doi.org/10.1016/j.electacta.2006.09.073
  • Muthukumar, M., Thalamadai, M., & Bhaskar, R. (2007). Electrochemical removal of CI Acid Orange 10 from aqueous solutions. Separation and Purification Technology, 55(2), 198-205. https://doi.org/10.1016/j.seppur.2006.11.014
  • National Survey on Energy Consumption in Private Households (ENCEVI) 2018. (2018). Retrieved from https://www.inegi.org.mx/programas/encevi/2018/
  • Niño, E. D., & Martínez, N. C. (2013). Study of domestic greywater in three socioeconomic levels of Bogotá. Pontificia Universidad Javeriana Facultad de Ingeniería. Retrieved from http://hdl.handle.net/10554/11139
  • Ottosson, J., & Stenström, T. A. (2003). Faecal contamination of greywater and associated microbial risks. Water Research, 37(3), 645-655. http://dx.doi.org/10.1016/S0043-1354(02)00352-4
  • Panizza, M., & Cerisola, G. (2001). Removal of organic pollutants from industrial wastewater by electrogenerated Fenton's reagent. Water Research, 35(1), 3987-3992. https://doi.org/10.1016/S0043-1354(01)00135-X
  • Pérez Carrión, J. (1980). State of the Art – Coagulation. Centro Panamericano de Ingeniería Sanitaria y Ciencias Ambientales (CEPIS), 1-44.
  • Pidou, M., Memon, F. A., Stephenson, T., Jefferson, B., & Jeffrey, P. (2007). Greywater recycling: Treatment options and applications. Proceedings of the Institution of Civil Engineers - Engineering Sustainability, 160(3), 119-131.
  • Pinto, G. O., da Silva Junior, L. C. S., Assad, D. B. N., Pereira, S. H., & de Brito Mello, L. C. B. (2021). Trends in global greywater reuse: a bibliometric analysis. Water Science and Technology, 84(10-11), 3257-3276. https://doi.org/10.2166/wst.2021.429
  • Qiao, J., & Xiong, Y. (2021). Electrochemical oxidation technology: A review of its application in high-efficiency treatment of wastewater containing persistent organic pollutants. Journal of Water Process Engineering, 44, 102308.https://doi.org/10.1016/j.jwpe.2021.102308
  • Reyes López, M. G. (2016). The use of chlorine in domestic wastewater treatment plants: Disinfection and formation of by-products. Master's thesis, Instituto Politécnico Nacional, Centro de Investigación Interdisciplinario para el Desarrollo Integral Regional Unidad Durango. Retrieved from http://repositoriodigital.ipn.mx/handle/123456789/23350
  • Salgado, R. J., Güitrón de los Reyes, A., & López, P. M. (2018). Impact Study on the Water Supply Service to the Population of the City of Mexicali for the Supply of Water to the Constellation Brands Brewery and Short and Long-Term Supply Strategy for the Plant (first stage). Instituto Mexicano de Tecnología del Agua (IMTA). Available at: https://agua.org.mx/wp-content/uploads/2019/01/IMTA-Estudio-Impacto-Abastecimiento-CBI.pdf. Accessed: January 01, 2022
  • Secretaría de Medio Ambiente y Recursos Naturales, Comisión Nacional del Agua. (1997). Mexican Official Standards, NOM-003-SEMARNAT-1997. Retrieved from http://www.ordenjuridico.gob.mx/Documentos/Federal/wo69207.pdf
  • Secretaría de Medio Ambiente y Recursos Naturales. (2022). Mexican Official Standard NOM-002-CONAGUA-2021, Sanitary equipment and accessories. Official Journal of the Federation. Retrieved from https://www.dof.gob.mx/nota_detalle.php?codigo=5672648&fecha=29/11/2022#gsc.tab=0
  • Shi, K.-W., Wang, C.-W., & Jiang, S. C. (2018). Quantitative microbial risk assessment of greywater on-site reuse. The Science of The Total Environment, 635(2), 1507-1519. https://doi.org/10.1016/j.scitotenv.2018.04.197
  • Solar panel data sheet. Retrieved from http://www.solardesigntool.com/components/module-panel-solar/TrinaSolar/4967/TSM-325PD14/specification-datasheet.html
    • Stirling, R., Walker, W. S., Westerhoff, P., & Garcia-Segura, S. (2020). Techno-economic analysis to identify key innovations required for electrochemical oxidation as point-of-use treatment systems. Electrochimica Acta, 338, 135874.https://doi.org/10.1016/j.electacta.2020.135874
  • Taqieddin, A., Sarrouf, S., Ehsan, M. F., & Alshawabkeh, A. N. (2023). New insights on designing the next-generation materials for electrochemical synthesis of reactive oxidative species towards efficient and scalable water treatment: A review and perspectives. Journal of Environmental Chemical Engineering, 11(6), 111384.https://doi.org/10.1016/j.jece.2023.111384
  • UNESCO World Water Assessment Programme. (2020). United Nations World Water Development Report 2020: Water and Climate Change. Retrieved from https://unesdoc.unesco.org/ark:/48223/pf0000372985
  • United Nations. (2015). Transforming our world: the 2030 Agenda for Sustainable Development. Retrieved from https://sdgs.un.org/goals