Vol. 23, No. 3 (2024), IE24314 https://doi.org/10.24275/rmiq/IE24314


Oil recovery by emulsion flooding


 

Authors

O. Olivares-Xometl, I. V. Lijanova, P. Arellanes, J. R. Hernandez-Perez, N. V. Likhanova


Abstract

The present work analyzes enhanced oil recovery laboratory experiments by emulsion flooding after the secondary recovery process by water or brine injection. The prepared emulsion was of the oil-in-water type, where the dispersed oil phase had a droplet size of around 15 µm. The oil displacement experiments were carried out in Hele-Shaw cells at 20 °C, Ottawa sand cores at 25 °C and Berea rock cores at 80 °C. In the Hele-Shaw cells, it was possible to visualize that by injecting an emulsion slug, new paths were formed as a result of the blocking of the preferential channel, which had been shaped during the secondary recovery process by water injection, by the emulsion dispersed phase, thus increasing the total sweeping zone and displacing unrecovered oil. The injection of slugs between 0.1-0.4 pore volumes into the sand and rock cores allowed the displacement of residual oil and achievement of oil recovery between 20-50 %.


Keywords

oil-in-water emulsion, additional oil recovery, Hele-Shaw cell, Berea sandstone, sand-pack.


References

  • Abdallah, W., & Buckley, J. S. (2007). Los fundamentos de la mojabilidad. Oilfield Review.
  • An, B., Solorzano, D., & Yuan, Q. (2022). Viscous Fingering Dynamics and Flow Regimes of Miscible Displacements in a Sealed Hele-Shaw Cell. Energies, 15(16), 5798. https://doi.org/10.3390/en15165798
  • Ban, T., & Kamo, H. (1993). Effect of Hydrophobicity of the Solid Substratum on Oil Displacement in the Hele-Shaw Model. En Developments in Petroleum Science (Vol. 39, pp. 187-195). Elsevier. https://doi.org/10.1016/S0376-7361(09)70061-5
  • Fanchi, J. R. (2005). Principles of applied reservoir simulation. Elsevier.
  • Hamidi, H., Mohammadian, E., Asadullah, M., Azdarpour, A., & Rafati, R. (2015). Effect of ultrasound radiation duration on emulsification and demulsification of paraffin oil and surfactant solution/brine using Hele-shaw models. Ultrasonics Sonochemistry, 26, 428-436. https://doi.org/10.1016/j.ultsonch.2015.01.009
  • Hayashi, J. A., & Soria, A. (2001). Spontaneous imbibition processes in Hele‐Shaw cells. AIChE Journal, 47(7), 1513-1523. https://doi.org/10.1002/aic.690470705
  • Izuchukwu, O., Ayodele, T. O., Abdullahi, G. S., Joshua, D., & Olalekan, O. (2018). Visualization of Heavy Oil Recovery Processes Using Hele-Shaw Cell. SPE-193502-MS. https://doi.org/10.2118/193502-MS
  • Lakatos, I., Lakatos-Szabó, J., Bódi, T., & Vágó, Á. (2008). New Alternatives of Water Shutoff Treatments: Application of Water Sensitive Metastable Systems. SPE-112403-MS. https://doi.org/10.2118/112403-MS
  • Lakatos, I., Tóth, J., Bauer, K., Lakatos-Szabó, J., Palásthy, Gy., & Wöltje, H. (2003). Comparative Study of Different Silicone Compounds as Candidates for Restriction of Water Production in Gas Wells. SPE-80204-MS. https://doi.org/10.2118/80204-MS
  • Lakatos, I., Tóth, J., Lakatos-Szabó, J., Kosztin, B., Palásthy, Gy., & Wöltje, H. (2002). Application of Silicone Microemulsion for Restriction of Water Production in Gas Wells. SPE-78307-MS. https://doi.org/10.2118/78307-MS
  • Li, K., Ovsepian, M., Xie, W., Varfolomeev, M. A., Luo, Q., & Yuan, C. (2024). Emulsions for enhanced oil recovery: Progress and prospect. Journal of Molecular Liquids, 393, 123658. https://doi.org/10.1016/j.molliq.2023.123658
  • Martinez, J. F., Schoeggl, F. F., Maini, B. B., & Yarranton, H. W. (2020). Investigation of Mechanisms for Gravity Drainage of Heavy Oil and Solvent Mixtures in a Hele-Shaw Cell. Energy & Fuels, 34(5), 5823-5837. https://doi.org/10.1021/acs.energyfuels.0c00599
  • Osei-Bonsu, K., Shokri, N., & Grassia, P. (2016). Fundamental investigation of foam flow in a liquid-filled Hele-Shaw cell. Journal of Colloid and Interface Science, 462, 288-296. https://doi.org/10.1016/j.jcis.2015.10.017
  • Park, C. W., & Homsy, G. M. (1985). The instability of long fingers in Hele–Shaw flows. The Physics of Fluids, 28(6), 1583-1585. https://doi.org/10.1063/1.864947
  • Paterson, L. (1985). Fingering with miscible fluids in a Hele Shaw cell. The Physics of Fluids, 28(1), 26-30. https://doi.org/10.1063/1.865195
  • Raza, S., & Gates, I. D. (2021). Effect of cellulose nanocrystal nanofluid on displacement of oil in a Hele-Shaw cell. Journal of Petroleum Science and Engineering, 196, 108068. https://doi.org/10.1016/j.petrol.2020.108068
  • She, Y., Aoki, H., Wang, W., Li, Z., Nasir, M., Mahardika, M. A., Patmonoaji, A., Matsushita, S., & Suekane, T. (2022). Spontaneous Deformation of Oil Clusters Induced by Dual Surfactants for Oil Recovery: Dynamic Study from Hele-Shaw Cell to Wettability-Altered Micromodel. Energy & Fuels, 36(11), 5762-5774. https://doi.org/10.1021/acs.energyfuels.2c00772
  • Singh, A., Pandey, K. M., & Singh, Y. (2021a). CFD analysis of viscous fingering in Hele-Shaw cell for air-glycerin system. International Conference on Mechanical, Electronics and Computer Engineering 2020: Materials Science, 45, 6381-6385. https://doi.org/10.1016/j.matpr.2020.11.069
  • Singh, A., Pandey, K. M., & Singh, Y. (2021b). Numerical investigation of immiscible Liquid-Liquid displacement in Hele-Shaw cell. International Conference on Mechanical, Electronics and Computer Engineering 2020: Materials Science, 45, 7151-7155. https://doi.org/10.1016/j.matpr.2021.02.151
  • Singh, A., Singh, Y., & Pandey, K. M. (2020). Viscous fingering instabilities in radial Hele-Shaw cell: A review. 10th International Conference of Materials Processing and Characterization, 26, 760-762. https://doi.org/10.1016/j.matpr.2020.01.022
  • Taher, S. E., Abderrahmane, H. A., & Al-Shalabi, E. W. (2022). Part 2: Oil displacement by foam injection in Hele-Shaw cell with a pattern of impermeable regions. Fuel, 320, 123884. https://doi.org/10.1016/j.fuel.2022.123884
  • Taher, S. E., Ait Abderrahmane, H., & Al-Shalabi, E. W. (2022). Part 1: Oil displacement by foam injection in Hele-Shaw cell with a pattern of impermeable regions. Fuel, 318, 123590. https://doi.org/10.1016/j.fuel.2022.123590
  • Tanino, Y., & Syed, A. (2019). Enhanced Oil Recovery by Polymer Flooding: Direct, Low-Cost Visualization in a Hele–Shaw Cell. Education Sciences, 9(3), 186. https://doi.org/10.3390/educsci9030186
  • Voroniak, A. ., Bryan, J. L., Taheri, S. ., Hejazi, H. ., & Kantzas, A. . (2016). Investigation of Post-Breakthrough Heavy Oil Recovery by Water and Chemical Additives Using Hele-Shaw Cell. D011S001R002. https://doi.org/10.2118/181149-MS
  • Zajic, J. E., Seffens, W., Gurrola, A., & Ban, T. (1989). Chapter 5 Oil Recovery by Bacterial and Polymer Solutions in the Hele-Shaw Model. En Developments in Petroleum Science (Vol. 22, pp. 99-112). Elsevier. https://doi.org/10.1016/S0376-7361(09)70093-7
  • Мазаев, В. В. (2004). Двухфазная фильтрация жидкостей в пористых гидрофильных средах, модифицированных кремнийорганическими гидрофобизаторами.