Vol. 23, No. 3 (2024), IE24351 https://doi.org/10.24275/rmiq/IE24351


Assessment of thermal comfort with phase change materials in a standard house for different Mexican climates: a simulation study using EnergyPlus


 

Authors

B.G. Gamboa-Loya, R. Jäckel, G.L. Gutiérrez-Urueta, C. Monreal-Jiménez, J.E. Rojas- Ricca, R. Peña-Gallardo


Abstract

This study presents a simulation to evaluate the thermal comfort in a standard model of a Mexican home, representative of the type of dwelling where most people in Mexico live, focusing on the effect of phase change materials (PCM) with a fusion temperature of 21°C. Eight representative cities were selected from the different Köppen climatic types in Mexican territory. The study was conducted using EnergyPlus. The simulations predict the time-dependent behavior of indoor temperature and relative humidity for calculating the discomfort index. The results include comparisons of thermal discomfort with and without the use of phase change materials. These indicate that, in most cases, the indoor temperature of the home is attenuated using phase change material, which promotes energy savings by reducing the need to use air conditioning equipment to achieve thermal comfort. This was particularly effective in Monterrey during summer season and Xalapa during winter, reducing 183.91 and 121.71 thermal discomfort hours, respectively (9.22% and 22.63% of hours). Meanwhile, the cities of Tuxtla Gutiérrez during summer and Mérida during winter were affected negatively with the use of phase change material, increasing 246.03 and 50.78 thermal discomfort hours, respectively (27.87% and 5.66% of hours). Overall, the enhancement of thermal comfort using phase change material was more effective during winter than in summer, due to the hot temperatures being constantly higher than the phase change material’s melting point.


Keywords

thermal comfort, EnergyPlus, PCM, total discomfort change.


References

  • Adilkhanova, I., Memon, S. A., Kim, J., & Sheriyev, A. (2021a). A novel approach to investigate the thermal comfort of the lightweight relocatable building integrated with PCM in different climates of Kazakhstan during summertime. Energy, 217, 119390. https://doi.org/10.1016/j.energy.2020.119390
  • Adilkhanova, I., Memon, S. A., Kim, J., & Sheriyev, A. (2021b). A novel approach to investigate the thermal comfort of the lightweight relocatable building integrated with PCM in different climates of Kazakhstan during summertime. Energy, 217, 119390. https://doi.org/10.1016/j.energy.2020.119390
  • ASHRAE Guideline 14. (2002). Measurement of Energy and Demand Savings
  • Auliciems Andris, & Szokolay Steven. (2007). THERMAL COMFORT (2nd ed.)
  • Ayala, S., Jäckel, R., Gutiérrez G., Ramos, A., Monreal, C., & Mejía, G. (2023). Optimización de parámetros de una caja de almacenamiento térmico: un estudio numérico basado en el método gráfico. ConSyCSA
  • Epstein, Y., & Moran, D. S. (2006). Thermal Comfort and the Heat Stress Indices. Industrial Health, 44(3), 388–398. https://doi.org/10.2486/indhealth.44.388
  • INEGI. (2020). Encuesta nacional de vivienda (ENVI), 2020. Principales resultados. https://www.inegi.org.mx/contenidos/saladeprensa/boletines/2021/envi/ENVI2020.pdf
  • INFONAVID. (2024). La casa 3. Manual de vivienda progresiva. Https://Decide-Construye-Autodiagnostico.Ruv.Org.Mx/Assets/Docs/Casa3-Planos.Pdf .
  • Jäckel, R., Tapia, F., Gutiérrez-Urueta, G., & Monreal Jiménez, C. (2020). Design of an aeronautic pitot probe with a redundant heating system incorporating phase change materials. Flow Measurement and Instrumentation, 76, 101817. https://doi.org/10.1016/j.flowmeasinst.2020.101817
  • Lawrie, L. K., & Drury B, C. (2022). Repository of free climate data for building performance simulation. https://climate.onebuilding.org/
  • Lee, K. O., Medina, M. A., & Sun, X. (2016). Development and verification of an EnergyPlus-based algorithm to predict heat transfer through building walls integrated with phase change materials. Journal of Building Physics, 40(1), 77–95. https://doi.org/10.1177/1744259115591252
  • Li, B.-Z., Zhuang, C.-L., Deng A-Z, Li, S. B., & Shen, X.-D. (2009). Improvement of indoor thermal environment in light weight building combining phase change material wall and night ventilation. Journal of Civil, Architectural and Environmental Engineering, 31(3), 109–113
  • Lugo, R. (2013). Análisis de costos de operación exergoeconómicos a un ciclo teórico de refrigeración por compresión de vapor usando HFC-134a. Revista Mexicana de Ingeniería Química, 12(2), 361–370
  • Memon, S. A. (2014). Phase change materials integrated in building walls: A state of the art review. Renewable and Sustainable Energy Reviews, 31, 870–906. https://doi.org/10.1016/j.rser.2013.12.042
  • National Centers for Environmental Information. (2024). Integrated Surface Dataset. Global Hourly; ISD
  • Overbey, D. (2016). Standard Effective Temperature (SET) and Thermal Comfort. https://www.buildingenclosureonline.com/blogs/14-the-be-blog/post/85635-standard-effective-temperature-set-and-thermal-comfort
  • Rahif, R., Fani, A., Kosinski, P., Attia, S. (2021). Climate Change Sensitive Overheating Assessment in Dwellings: A Case Study In Belgium. Conference: Building Simulation 2021. Bruges, Belgium
  • Rollos, M. (1993). HVAC Systems and Indoor Air Quality. Indoor and Built Environment, 2(4), 204–212. https://doi.org/10.1159/000463257
  • Rubitherm. (2024). https://www.rubitherm.eu/en/productcategory/organische-pcm-rt.
  • Salazar, M., Lugo, R., Bonilla, A. E., Méndez, F., Lugo, H. (2016). Theorical analysis of thermal control of evaporator of refrigeration system with HFC-134a. Revista Mexicana de Ingeniería Química, 15(1), 291-297
  • SENER. (2022). Balance Nacional De Energía 2022
  • Sheriyev, A., Memon, S. A., Adilkhanova, I., & Kim, J. (2021). Effect of Phase Change Materials on the Thermal Performance of Residential Building Located in Different Cities of a Tropical Rainforest Climate Zone. Energies, 14(9), 2699. https://doi.org/10.3390/en14092699
  • Siami, L., & Ramadhani, A. (2019). Climatology of Discomfort Index for Decade in Bandar Lampung, Indonesia. KnE Social Sciences. https://doi.org/10.18502/kss.v3i21.4987
  • Solano García, N. E. (2022). Materiales en la edificación. Universidad Nacional Autónoma de México. Facultad de Arquitectura, Ed.
  • Tlatelpa-Becerro, A., Rico-Martínez, R., Cárdenas-Manríquez, M., Urquiza, G., Alarcón-Hernández, F. B., & Fuentes-Albarran, M. C. (2022). Prediction of the dynamic behavior of a solar chimney by means of artificial neural networks. Revista Mexicana de Ingeniería Química, 21(1), 1–21. https://doi.org/10.24275/rmiq/IE2495
  • Zhuang, C., Deng, A., Chen, Y., Li, S., Zhang, H., & Fan, G. (2010). Validation of Veracity on Simulating the Indoor Temperature in PCM Light Weight Building by EnergyPlus (pp. 486–496). https://doi.org/10.1007/978-3-642-15621-2_53
  • Zhussupbekov, M., Memon, S. A., Khawaja, S. A., Nazir, K., & Kim, J. (2023). Forecasting energy demand of PCM integrated residential buildings: A machine learning approach. Journal of Building Engineering, 70, 106335. https://doi.org/10.1016/j.jobe.2023.106335