- Adilkhanova, I., Memon, S. A., Kim, J., & Sheriyev, A. (2021a). A novel approach to investigate the thermal comfort of the lightweight relocatable building integrated with PCM in different climates of Kazakhstan during summertime. Energy, 217, 119390. https://doi.org/10.1016/j.energy.2020.119390
- Adilkhanova, I., Memon, S. A., Kim, J., & Sheriyev, A. (2021b). A novel approach to investigate the thermal comfort of the lightweight relocatable building integrated with PCM in different climates of Kazakhstan during summertime. Energy, 217, 119390. https://doi.org/10.1016/j.energy.2020.119390
- ASHRAE Guideline 14. (2002). Measurement of Energy and Demand Savings
- Auliciems Andris, & Szokolay Steven. (2007). THERMAL COMFORT (2nd ed.)
- Ayala, S., Jäckel, R., Gutiérrez G., Ramos, A., Monreal, C., & Mejía, G. (2023). Optimización de parámetros de una caja de almacenamiento térmico: un estudio numérico basado en el método gráfico. ConSyCSA
- Epstein, Y., & Moran, D. S. (2006). Thermal Comfort and the Heat Stress Indices. Industrial Health, 44(3), 388–398. https://doi.org/10.2486/indhealth.44.388
- INEGI. (2020). Encuesta nacional de vivienda (ENVI), 2020. Principales resultados. https://www.inegi.org.mx/contenidos/saladeprensa/boletines/2021/envi/ENVI2020.pdf
- INFONAVID. (2024). La casa 3. Manual de vivienda progresiva. Https://Decide-Construye-Autodiagnostico.Ruv.Org.Mx/Assets/Docs/Casa3-Planos.Pdf .
- Jäckel, R., Tapia, F., Gutiérrez-Urueta, G., & Monreal Jiménez, C. (2020). Design of an aeronautic pitot probe with a redundant heating system incorporating phase change materials. Flow Measurement and Instrumentation, 76, 101817. https://doi.org/10.1016/j.flowmeasinst.2020.101817
- Lawrie, L. K., & Drury B, C. (2022). Repository of free climate data for building performance simulation. https://climate.onebuilding.org/
- Lee, K. O., Medina, M. A., & Sun, X. (2016). Development and verification of an EnergyPlus-based algorithm to predict heat transfer through building walls integrated with phase change materials. Journal of Building Physics, 40(1), 77–95. https://doi.org/10.1177/1744259115591252
- Li, B.-Z., Zhuang, C.-L., Deng A-Z, Li, S. B., & Shen, X.-D. (2009). Improvement of indoor thermal environment in light weight building combining phase change material wall and night ventilation. Journal of Civil, Architectural and Environmental Engineering, 31(3), 109–113
- Lugo, R. (2013). Análisis de costos de operación exergoeconómicos a un ciclo teórico de refrigeración por compresión de vapor usando HFC-134a. Revista Mexicana de Ingeniería Química, 12(2), 361–370
- Memon, S. A. (2014). Phase change materials integrated in building walls: A state of the art review. Renewable and Sustainable Energy Reviews, 31, 870–906. https://doi.org/10.1016/j.rser.2013.12.042
- National Centers for Environmental Information. (2024). Integrated Surface Dataset. Global Hourly; ISD
- Overbey, D. (2016). Standard Effective Temperature (SET) and Thermal Comfort. https://www.buildingenclosureonline.com/blogs/14-the-be-blog/post/85635-standard-effective-temperature-set-and-thermal-comfort
- Rahif, R., Fani, A., Kosinski, P., Attia, S. (2021). Climate Change Sensitive Overheating Assessment in Dwellings: A Case Study In Belgium. Conference: Building Simulation 2021. Bruges, Belgium
- Rollos, M. (1993). HVAC Systems and Indoor Air Quality. Indoor and Built Environment, 2(4), 204–212. https://doi.org/10.1159/000463257
- Rubitherm. (2024). https://www.rubitherm.eu/en/productcategory/organische-pcm-rt.
- Salazar, M., Lugo, R., Bonilla, A. E., Méndez, F., Lugo, H. (2016). Theorical analysis of thermal control of evaporator of refrigeration system with HFC-134a. Revista Mexicana de Ingeniería Química, 15(1), 291-297
- SENER. (2022). Balance Nacional De Energía 2022
- Sheriyev, A., Memon, S. A., Adilkhanova, I., & Kim, J. (2021). Effect of Phase Change Materials on the Thermal Performance of Residential Building Located in Different Cities of a Tropical Rainforest Climate Zone. Energies, 14(9), 2699. https://doi.org/10.3390/en14092699
- Siami, L., & Ramadhani, A. (2019). Climatology of Discomfort Index for Decade in Bandar Lampung, Indonesia. KnE Social Sciences. https://doi.org/10.18502/kss.v3i21.4987
- Solano García, N. E. (2022). Materiales en la edificación. Universidad Nacional Autónoma de México. Facultad de Arquitectura, Ed.
- Tlatelpa-Becerro, A., Rico-Martínez, R., Cárdenas-Manríquez, M., Urquiza, G., Alarcón-Hernández, F. B., & Fuentes-Albarran, M. C. (2022). Prediction of the dynamic behavior of a solar chimney by means of artificial neural networks. Revista Mexicana de Ingeniería Química, 21(1), 1–21. https://doi.org/10.24275/rmiq/IE2495
- Zhuang, C., Deng, A., Chen, Y., Li, S., Zhang, H., & Fan, G. (2010). Validation of Veracity on Simulating the Indoor Temperature in PCM Light Weight Building by EnergyPlus (pp. 486–496). https://doi.org/10.1007/978-3-642-15621-2_53
- Zhussupbekov, M., Memon, S. A., Khawaja, S. A., Nazir, K., & Kim, J. (2023). Forecasting energy demand of PCM integrated residential buildings: A machine learning approach. Journal of Building Engineering, 70, 106335. https://doi.org/10.1016/j.jobe.2023.106335
|