Vol. 23, No. 3 (2024), Mat24292 https://doi.org/10.24275/rmiq/Mat24292


An Improved Method for CO2 adsorption based on two precursors supported in a mesoporous silica


 

Authors

M.I. González-Nava, R. Nava-Mendoza, R. Velazquez-Castillo, J.D. Mendiola-Santibañez, E.M. Rivera-Muñoz, J. Rodriguez-Resendiz


Abstract

The escalating levels of CO2} in recent years have demanded effective solutions and technologies for emissions reduction. The CO2} capture, storage, and transformation allow the opportunity to reduce emissions into the atmosphere and thus mitigate related problems. This study explores novel methods for enhancing the adsorption and removal of CO2} using mesoporous materials. Our approach involves impregnating mesoporous silica SBA-15 with varying proportions (5%, 10%, and 15%) of calcium and magnesium acetate precursors, as well as their oxides and hydroxides. Preliminary experiments showed that magnesium demonstrated superior performance, leading to further investigation using a secondary precursor, magnesium chloride. Subsequent analysis of CO2} adsorption revealed enhanced results with magnesium oxides and hydroxides derived from this second precursor. The findings indicate that optimal adsorption is achieved with 15% Mg(OH)2, 8.09 mmolg/mmol/g, and 15% MgO, 10.12 mmolg/mmol/g, when employing the magnesium chloride precursor. Notably, adsorption increases proportionally with higher material ratios. These results surpass existing literature, showcasing the efficacy of the proposed methodology in achieving superior CO2} adsorption.


Keywords

Adsorption of CO\texorpdfstring{$_2$}{\_2}, oxides, hydroxides, mesoporous silica, acetates, chloride.


References

  • Ai, J., Li, F., Wu, Y., Yin, Y., Wu, Z., and Zhang, J. (2023).          Synthesis of mesoporous magnesium silicate from coal gangue for efficient CO2 adsorption at room temperature. Fuel, 341, 127692. https://doi.org/10.1016/j.fuel.2023. 127692
  • Al-Absi, A., Domin, A., Mohamedali, M., Benneker, A., and Mahinpey, N. (2022). CO2 capture using in-situ polymerized amines into   pore-expanded-Sba-15:   Performance
  • Alzahmi, S., Gopi, C. V. V. M., Rusydi, A., and Obaidat, I. M. (2023). A facile two-step hydrothermal synthesis of CO(OH)2@NiCO2O4 nanosheet nanocomposites for supercapacitor electrodes.    Nanomaterials  13(13).  https://doi.org/10.3390/nano13131981
  • Beruto, D. and Botter, R. (2000). Liquid-like H2O adsorption layers to catalyze the Ca(OH)2/CO2 solid-gas reaction and to form a non-protective solid product layer at 20°C. Journal of The European Ceramic Society - J EUR CERAM SOC 20, 497–503. https://doi.org/10.1016/ S0955-2219(99)00185-5
  • Chen, B., Qiu, J., Xu, L., and Cui, Y. (2022). Ni-based mesoporous Ce0.8Zr0.2O2 catalyst with enhanced low-temperature performance for CO2 methanation. Catalysis Communications 171, 106515. https://doi.org/10.1016/j.catcom.2022.106515
  • de Sá da Silva, D. P., de Melo Silva, D. C., Ribeiro, T. R. S., Solano, J. R. S., Barros da Silva, B. J., Altino, S. A., and da Silva, A. O. S. (2022). Mesoporous aluminas synthesis using carboxylic acids to enhance performance in CO2 adsorption. Journal of Environmental Chemical Engineering, 10(6):108928. https://doi.org/ 10.1016/j.jece.2022.108928
  • Dong, Z., Shi, Y., Jiang, Y., Yao, C., and Zhang, Z. (2023). In situ growth of CsPbBr3 quantum dots in mesoporous SnO2 frameworks as an efficient CO2-reduction photocatalyst. Journal of CO2 Utilization 72, 102480. https://doi.org/10. 1016/j.jcou.2023.102480
  • Dávila-Parra, F., Plasencia-Jatomea, M., Amaya, O., Mártin-García, A., Vega-Olivas, J., and Almendariz Tapia, F. J. (2022).  Influence of initial copper concentration, ph, and cross-linked alginate-chitosan and alginate- chitosan-aspergillus australensis composite beads on the adsorption capacity and removal efficiency of copper ions. Revista Mexicana de Ingeniería Química 21, IA2892. https://doi.org/10.24275/rmiq/IA2892
  • Fadillah, G. and Saleh, T. A. (2022).  Advances in mesoporous material for adsorption and photoconversion of CO2 in environmental pollution: Clean environment and clean energy. Sustainable Chemistry and Pharmacy 29, 100812. https://doi.org/10.1016/j.scp.2022.100812
  • Flodström, K. and Alfredsson, V. (2003). Influence of the block length of triblock copolymers on the formation of mesoporous silica. Microporous and Mesoporous Materials 59, (2):167–176. https://doi.org/10.1016/S1387-1811(03)00308-1
  • Gonzales-Condori, E., Avalos-López, G., Gonzales- Condori, J., Mujica-Guzman, A., Terán-Hilares, R., Briceño, G., Quispe-Avilés, J., Parra, P., and Villanueva-Salas, J. (2023). Avocado seed powder residues as a promising bio-adsorbent for color removal from textile wastewater. Revista Mexicana de Ingeniería Química 22, IA2370. https://doi. org/10.24275/rmiq/IA2370
  • Guo, S., Li, Y., Wang, Y., Wang, L., Sun, Y., and Liu, L. (2022a). Recent advances in biochar- based adsorbents for CO2 capture. Carbon Capture Science & Technology 4, 100059. https://doi. org/10.1016/j.ccst.2022.100059
  • Guo, S., Li, Y., Wang, Y., Wang, L., Sun, Y., and Liu, L. (2022b). Recent advances in biochar- based adsorbents for CO2 capture. Carbon Capture Science & Technology 4, 100059. https://doi. org/10.1016/j.ccst.2022.100059
  • Liu, M. and Gadikota, G. (2019). Integrated CO2 capture, conversion, and storage to produce calcium carbonate using an amine looping strategy. Energy & Fuels 33, 1722–1733. https://doi.org/10. 1021/acs.energyfuels.8b02803
  • Maruccia, E., Lourenço, M., Priamushko, T., Bartoli, M., Bocchini, S., Pirri, F., Saracco, G., Kleitz, F., and Gerbaldi, C. (2021). Nanocast nitrogen- containing ordered mesoporous carbons from glucosamine for selective CO2 capture. Materials Today Sustainability 17, 100089. https://doi.org/10.1016/j.mtsust.2021.100089
  • Maruccia, E., Piovano, A., Lourenço, M., Priamushko, T., Cavallo, M., Bocchini, S., Bonino, F., Pirri, F., Kleitz, F., and Gerbaldi, C. (2023).  Revealing the competitive effect of N2 and H2O towards CO2 adsorption in n-rich ordered mesoporous carbons. Journal Materials Today Sustainability 21, 100270. https://doi.org/10.1016/j.mtsust.2022.100270
  • Mohamedali, M., Ibrahim, H., and Henni, A. (2020). Imidazolium based ionic liquids confined into mesoporous silica MCM-41 and SBA-15 for carbon dioxide capture. Microporous and Mesoporous Materials 294, 109916. https://doi.org/10. 1016/j.micromeso.2019.109916
  • Montes-Hernandez, G., Chiriac, R., Toche, F., and Renard, F. (2012).  Gas-solid carbonation of Ca(OH)2 and CaO particles under non- isothermal and isothermal conditions by using a thermogravimetric analyzer: Implications for CO2 capture. International Journal of Greenhouse Gas Control 11, 172–180. https://doi.org/10.1016/j.ijggc.2012.08.009
  • Mureseanu, M., Filip, M., Bleotu, I., Spinu, C. I., Marin, A. H., Matei, I., and Parvulescu, V. (2023). Cu(II) and Mn(II) anchored on functionalized mesoporous silica with Schiff bases: Effects of supports and metal–ligand interactions on catalytic activity. Nanomaterials 13, (12). https://doi.org/10.3390/nano13121884
  • Qin, Z. (2023). Nanostructure design of catalysts: Latest advances and prospects. Nanomaterials 13, 1980. https://doi.org/10.3390/nano13121884
  • Tovar, C., Bonilla-Mancilla, H., Pino-Moreyra, J., Villabona-Ortíz, A., and Ortega-Toro, R. (2020). Effect of the adsorbent dose in Pb(II) removal by using sugar cane bagasse: Kinetics and isotherms. Revista Mexicana de Ingeniería Química 19, IA1101. https://doi.org/10.24275/rmiq/IA1101
  • Tovar, C., Bonilla-Mancilla, H., Villabona-Ortíz, A., Ortega-Toro, R., and Licares-Eguavil, J. (2021). Effect of the adsorbent dose and initial contaminant concentration on the removal of Pb(II) in a solution using opuntia ficus indica shell. Revista Mexicana de Ingeniería Química 20, 555–568. https://doi.org/10.24275/rmiq/IA2134
  • Vakros, J., Hapeshi, E., Cannilla, C., and Bonura,
  • G. (2023). Synthesis, characterization and performance of materials for a sustainable future. Nanomaterials 13, 1929. https://doi.org/10.3390/nano13131929
  • Vance, K., Falzone, G., Pignatelli, I., Bauchy, M., Balonis, M., and Sant, G. (2015). Direct carbonation of Ca(OH)2 using liquid and supercritical CO2: Implications for carbon- neutral cementation. Industrial & Engineering Chemistry Research 54,(36), 8908–8918. https://doi.org/10.1021/acs.iecr.5b02356
  • Villabona-Ortíz, A., Tovar, C., and Ortega-Toro, R. (2019). Modelling of the adsorption kinetics of chromium (vi) using waste biomaterials. Revista Mexicana de Ingeniería Química 19, 401–408. https://doi.org/10.24275/rmiq/IA650
  • Villabona-Ortíz, A., Tovar, C., Ortega-Toro, R., Aguilar-Bermúdez, F., and Pájaro-Moreno, Y. (2021). Synthesis of adsorbents from wheat hulls, extracted cellulose and modified with cetyl trimethyl ammonium chloride to remove congo red in aqueous solution.  Revista Mexicana de Ingeniería Química 20, IA2426 https://doi.org/10.24275/rmiq/IA2426
  • Waseda, Y., Matsubara, E., and Shinoda, K. (2011).X-Ray Diffraction Crystallography, pages 21–66.        https://doi.org/10.1007/978-3-642- 16635-8_2 Springer.
  • Wu, K., Ye, Q., Wang, L., Meng, F., and Dai, H. (2022). Mesoporous alumina-supported layered double hydroxides for efficient CO2 capture. Journal of CO2 Utilization 60, 101982. https://doi.org/10.1016/j.jcou.2022.101982