Vol. 23, No. 3 (2024), Poly24405 https://doi.org/10.24275/rmiq/Poly24405


Cold plasma oligomerization in argon atmosphere from carvacrol: Product formation and characterization


 

Authors

E.O. Martínez-Ruiz, J.A. González-López, C. G. Cuellar-Gaona, M. Á. González-López, J. R. Torres-Lubián, M.E. Treviño-Martínez, C. Gallardo-Vega, G. Soria-Arguello, M. G. Neira-Velázquez


Abstract

Carvacrol, a monoterpenoid sourced from sustainable materials like oregano, has been studied for its oxidation into higher value compounds, such as thymoquinone or low molar mass derivatives, due to their applicability in epoxy resin synthesis. This oxidation process employs a range of catalysts, solvents and oxidizing agents. Cold plasma oligomerization of carvacrol in an argon atmosphere presents an alternative to catalytic methods. From 3 mL of carvacrol, 46 mg of solid product (Pcrol) were obtained, achieving a 35 ±0.5% selectivity. Surface examinations reveal a hydrophobic material with a meshed texture, while chemical characterization confirms the retention of functional groups, successful plasma oligomerization and provides insights into the reaction mechanism. The results identify Pcrol as an oligomer, and thermal analysis suggests it decomposes below 300 ±2.11 °C, likely due to its shorter oligomer chains.


Keywords

carvacrol; cold plasma; oligomer, sustainable, green chemistry.


References

  • Alba-Perez, A., Jayawarna, V., Childs, P. G., Dalby, M. J., & Salmeron-Sanchez, M. (2020). Plasma polymerised nanoscale coatings of controlled thickness for efficient solid-phase presentation of growth factors. Materials Science and Engineering: C, 113, 110966. https://doi.org/10.1016/J.MSEC.2020.110966
  • Arrieta-Almario, A. A., Mendoza-Fandiño, J. M., & Palencia-Luna, M. S. (2019). Composite material elaborated from conducting biopolymer cassava starch and polyaniline. Revista Mexicana de Ingeniería Química, 19(2), 707–715. https://doi.org/10.24275/rmiq/Mat765
  • Chan, Y. W., Siow, K. S., Ng, P. Y., Gires, U., & Yeop Majlis, B. (2016). Plasma polymerized carvone as an antibacterial and biocompatible coating. Materials Science and Engineering: C, 68, 861–871. https://doi.org/10.1016/j.msec.2016.07.040
  • Chen, Y.-H., Chuang, E.-Y., Jheng, P.-R., Hao, P.-C., Hsieh, J.-H., Chen, H.-L., Mansel, B. W., Yeh, Y.-Y., Lu, C.-X., Lee, J.-W., Hsiao, Y.-C., & Bolouki, N. (2021). Cold-atmospheric plasma augments functionalities of hybrid polymeric carriers regenerating chronic wounds: In vivo experiments. Materials Science and Engineering: C, 131, 112488. https://doi.org/10.1016/j.msec.2021.112488
  • Cuellar-Gaona, C. G., Ibarra-Alonso, M. C., Narro-Céspedes, R. I., Neira-Velázquez, M. G., Dávila-Medina, M. D., Zugasti-Cruz, A., Esparza-González, S. C., Sáenz-Galindo, A., & Martínez-Ruiz, E. O. (2023). Enhancing biocompatibility and antimicrobial efficacy through plasma technology modification of chitosan/Rosmarinus officinalis hydrogels. Revista Mexicana de Ingeniería Química, 23(1), 1–29. https://doi.org/10.24275/rmiq/Poly24171
  • da Silva, A. R. P., Costa, M. do S., Araújo, N. J. S., de Freitas, T. S., dos Santos, A. T. L., Gonçalves, S. A., da Silva, V. B., Andrade-Pinheiro, J. C., Tahim, C. M., Lucetti, E. C. P., & Coutinho, H. D. M. (2023). Antibacterial activity and antibiotic-modifying action of carvacrol against multidrug-resistant bacteria. Advances in Sample Preparation, 7, 100072. https://doi.org/10.1016/j.sampre.2023.100072
  • Da Silva, V. S., Dos Santos Vieira, W. C., Meireles, A. M., Ucoski, G. M., Nakagaki, S., Idemori, Y. M., & DeFreitas-Silva, G. (2017). Biomimetic oxidation of cyclic and linear alkanes: high alcohol selectivity promoted by a novel manganese porphyrin catalyst. New Journal of Chemistry, 41(3). https://doi.org/10.1039/c6nj03072f
  • Farr, N. T. H. (2023). Regulating the formation and extent of crazing through the application of argon plasma surface functionalisation. Polymer Testing, 128, 108244. https://doi.org/10.1016/j.polymertesting.2023.108244
  • França, A. S., & Oliveira, L. S. (2022). FTIR Spectroscopy: Advances in Research and Applications. In A. S. França & L. S. Oliveira (Eds.), FTIR Spectroscopy: Advances in Research and Applications. Nova Science Publishers. https://doi.org/10.52305/GOJG7949
  • Fridman, A. (2008). Plasma Chemistry. In Plasma Chemistry (Vol. 9780521847353). Cambridge University Press. https://doi.org/10.1017/CBO9780511546075
  • Fridman, A., Fridman, A., Kennedy, L. A., & Kennedy, L. A. (2004). Plasma Physics and Engineering. CRC Press. https://doi.org/10.1201/9781482293630
  • Gaglio, R., Botta, L., Garofalo, G., Miceli, A., Settanni, L., & Lopresti, F. (2021). Carvacrol activated biopolymeric foam: An effective packaging system to control the development of spoilage and pathogenic bacteria on sliced pumpkin and melon. Food Packaging and Shelf Life, 28, 100633. https://doi.org/10.1016/J.FPSL.2021.100633
  • Galizia, M., Daniel, C., Guerra, G., & Mensitieri, G. (2013). Solubility and diffusivity of low molecular weight compounds in semi-crystalline poly-(2,6-dimethyl-1,4-phenylene)oxide: The role of the crystalline phase. Journal of Membrane Science, 443, 100–106. https://doi.org/10.1016/j.memsci.2013.04.070
  • Gazzotti, S., Ortenzi, M. A., Farina, H., Disimino, M., & Silvani, A. (2020). Carvacrol- And Cardanol-Containing 1,3-Dioxolan-4-ones as Comonomers for the Synthesis of Functional Polylactide-Based Materials. Macromolecules, 53(15). https://doi.org/10.1021/acs.macromol.0c01537
  • Getnet, T. G., da Cruz, N. C., Kayama, M. E., & Rangel, E. C. (2020). Plasma Polymer Deposition of Neutral Agent Carvacrol on a Metallic Surface by Using Dielectric Barrier Discharge Plasma in Ambient Air (pp. 716–725). Universidade Estadual Paulista (Unesp). https://doi.org/10.1007/978-3-030-43690-2_55
  • Guerrero-Pérez, M. O., Gregory, |, Patience, S., & Guerrero-Pérez, M. O. (2019). Experimental methods in chemical engineering: Fourier transform infrared spectroscopy-FTIR. https://doi.org/10.1002/cjce.23664
  • Gul, U., Khan, M. I., Madni, A., Sohail, M. F., Rehman, M., Rasul, A., & Peltonen, L. (2022). Olive oil and clove oil-based nanoemulsion for topical delivery of terbinafine hydrochloride: in vitro and ex vivo evaluation. Drug Delivery, 29(1), 600–612. https://doi.org/10.1080/10717544.2022.2039805
  • Günay, T., Çimen, Y., Karabacak, R. B., & Türk, H. (2016). Oxidation of Thymol and Carvacrol to Thymoquinone with KHSO5 Catalyzed by Iron Phthalocyanine Tetrasulfonate in a Methanol–Water Mixture. Catalysis Letters, 146(11), 2306–2312. https://doi.org/10.1007/s10562-016-1850-2
  • Hajibonabi, A., Yekani, M., Sharifi, S., Nahad, J. S., Dizaj, S. M., & Memar, M. Y. (2023). Antimicrobial activity of nanoformulations of carvacrol and thymol: New trend and applications. OpenNano, 13, 100170. https://doi.org/10.1016/J.ONANO.2023.100170
  • Herrera-González, A. M., Caldera-Villalobos, M., Pérez-Mondragón, A. A., Cuevas-Suárez, C. E., & González-López, J. A. (2019). Analysis of Double Bond Conversion of Photopolymerizable Monomers by FTIR-ATR Spectroscopy. Journal of Chemical Education, 96(8), 1786–1789. https://doi.org/10.1021/acs.jchemed.8b00659
  • Hwang, H., Hsu, S., & Wang, C. (2008). Synthesis and physical properties of low‐molecular‐weight redistributed poly(2,6‐dimethyl‐1,4‐phenylene oxide) for epoxy resin. Journal of Applied Polymer Science, 110(3), 1880–1890. https://doi.org/10.1002/app.28770
  • I Gi, C., Gan, S. N., & Ang, D. T.-C. (2024). Designing polymeric coating with low coefficient of friction for natural rubber glove application. Journal of Industrial and Engineering Chemistry, 132, 496–506. https://doi.org/10.1016/j.jiec.2023.11.043
  • Kabir, H., Nasrin, R., Mahbubur Rahman, M., & Bhuiyan, A. H. (2020). Heat treatment effect on the structural, morphological, and optical properties of plasma polymerized furan-2-carbaldehyde thin films. Results in Physics, 16, 103014. https://doi.org/10.1016/J.RINP.2020.103014
  • Kinmond, E. J., Coulson, S. R., Badyal, J. P. S., Brewer, S. A., & Willis, C. (2005). High structural retention during pulsed plasma polymerization of 1H,1H,2H-perfluorododecene: an NMR and TOF-SIMS study. Polymer, 46(18), 6829–6835. https://doi.org/10.1016/j.polymer.2005.05.112
  • Kopp, D., Lackner, J. M., Kaindl, R., Elter, R., Stummer, M., Hinterer, A., Coclite, A. M., & Waldhauser, W. (2022). Low-friction, wear-protecting coatings on polymers by atmospheric pressure plasma spraying. Surface and Coatings Technology, 448, 128930. https://doi.org/10.1016/J.SURFCOAT.2022.128930
  • Kwok, C. S., Horbett, T. A., & Ratner, B. D. (1999). Design of infection-resistant antibiotic-releasing polymers. Journal of Controlled Release, 62(3), 301–311. https://doi.org/10.1016/S0168-3659(99)00105-4
  • Levien, M., Amin, I., Vicente de Paula Kodaira, F., & Weltmann, K. D. (2023). Direct grafting of microwrinkled hydrogels by atmospheric-pressure plasma polymerization: Going simple and environmentally friendly. European Polymer Journal, 198, 112413. https://doi.org/10.1016/J.EURPOLYMJ.2023.112413
  • Lopresti, F., Botta, L., La Carrubba, V., Di Pasquale, L., Settanni, L., & Gaglio, R. (2021). Combining carvacrol and nisin in biodegradable films for antibacterial packaging applications. International Journal of Biological Macromolecules, 193, 117–126. https://doi.org/10.1016/J.IJBIOMAC.2021.10.118
  • Martinez-Ruiz, E. O. (2017). Partial oxidation of methane in a dielectric barrier discharge plasma milli-reactor. https://doi.org/10.13039/501100005737
  • McGuinness, D. S., Suttil, J. A., Gardiner, M. G., & Davies, N. W. (2008). Ethylene Oligomerization with Cr−NHC Catalysts: Further Insights into the Extended Metallacycle Mechanism of Chain Growth. Organometallics, 27(16), 4238–4247. https://doi.org/10.1021/om800398e
  • Meireles, A. M., Guimarães, A. S., Querino, G. R., Castro, K. A. D. de F., Nakagaki, S., & DeFreitas‐Silva, G. (2021). Exploring manganese pyridylporphyrin isomers for cyclohexane oxidation: First‐generation catalysts are better than third‐generation ones. Applied Organometallic Chemistry, 35(11). https://doi.org/10.1002/aoc.6400
  • Michlíček, M., Blahová, L., Dvořáková, E., Nečas, D., & Zajíčková, L. (2021). Deposition penetration depth and sticking probability in plasma polymerization of cyclopropylamine. Applied Surface Science, 540, 147979. https://doi.org/10.1016/j.apsusc.2020.147979
  • Mohamed, H. O., Velisoju, V. K., Hita, I., Abed, O., Parsapur, R. K., Zambrano, N., Hassine, M. Ben, Morlanes, N., Emwas, A.-H., Huang, K.-W., & Castaño, P. (2023). Highly productive framework bounded Ni2+ on hierarchical zeolite from ethylene oligomerization. Physical Science and Engineering, 475, 23955–26900. https://doi.org/10.1016/j.cej.2023.146077
  • Nath, S. D., & Bhuiyan, A. H. (2023). Charge carrier transport mechanism in plasma polymerized methyl acrylate thin films. Thin Solid Films, 786, 140098. https://doi.org/10.1016/J.TSF.2023.140098
  • Özen, İ., Demir, A., Bahtiyari, M. İ., Wang, X., Nilghaz, A., Wu, P., Shirvanimoghaddam, K., & Naebe, M. (2024). Multifaceted applications of thymol/carvacrol-containing polymeric fibrous structures. Advanced Industrial and Engineering Polymer Research, 7(2), 182–200. https://doi.org/10.1016/j.aiepr.2023.09.001
  • Queiroz, J. D. F. de, Leal, A. M. de S., Terada, M., Agnez-Lima, L. F., Costa, I., Pinto, N. C. de S., & Batistuzzo de Medeiros, S. R. (2014). Surface modification by argon plasma treatment improves antioxidant defense ability of CHO-k1 cells on titanium surfaces. Toxicology in Vitro, 28(3), 381–387. https://doi.org/10.1016/J.TIV.2013.11.012
  • Quirk, R. P., Guo, Y., Wesdemiotis, C., & Arnould, M. A. (2004). Investigation of ethylene oxide oligomerization during functionalization of poly(butadienyl)lithium using MALDI-TOF MS and 1H NMR analyses. Polymer, 45(10), 3423–3428. https://doi.org/10.1016/j.polymer.2004.03.022
  • Ravve, A. (2012). Principles of Polymer Chemistry. In Principles of Polymer Chemistry, Third Edition. Springer New York. https://doi.org/10.1007/978-1-4614-2212-9
  • Saramolee, P., Trubmusik, S., Sunthondecha, T., Nisoa, M., & Johns, J. (2021). Effect of plasma-polymerised acetylene-coated silica on the compound properties of natural rubber composites. Heliyon, 7(10), e08120. https://doi.org/10.1016/J.HELIYON.2021.E08120
  • Swanson, W. B., Tabaczynski, D., Lis, D., Zurek, E., & Kozik, M. (2021). Direct experimental 31P 2D DOSY NMR evidence for oligomerization of transition-metal substituted polyoxotungstates in nonpolar solvents. Polyhedron, 204, 115174. https://doi.org/10.1016/j.poly.2021.115174
  • Tessaro, P. S., Meireles, A. M., Guimarães, A. S., Schmitberger, B., Lage, A. L. A., Patrício, P. S. de O., Martins, D. C. da S., & DeFreitas-Silva, G. (2022). The polymerization of carvacrol catalyzed by Mn-porphyrins: obtaining the desired product guided by the choice of solvent, oxidant, and catalyst. New Journal of Chemistry, 46(44), 21136–21147. https://doi.org/10.1039/D2NJ03171J
  • Thompson, J. M. (2018). Infrared Spectroscopy. Jenny Stanford Publishing. https://doi.org/10.1201/9781351206037
  • Vafeas, P., Papadopoulos, P. K., Vafakos, G. P., Svarnas, P., & Doschoris, M. (2020). Modelling the electric field in reactors yielding cold atmospheric–pressure plasma jets. Scientific Reports, 10(1), 5694. https://doi.org/10.1038/s41598-020-61939-7
  • Wróbel, A. M., Walkiewicz-Pietrzykowska, A., Hatanaka, Y., Wickramanayaka, S., & Nakanishi, Y. (2001). Oligomerization and Polymerization Steps in Remote Plasma Chemical Vapor Deposition of Silicon-Carbon and Silica Films from Organosilicon Sources. Chemistry of Materials, 13(8), 2742–2742. https://doi.org/10.1021/cm012004o
  • Yang, Z., Peng, H., Wang, W., & Liu, T. (2010). Crystallization Behavior of Poly(e-caprolactone)/Layered Double Hydroxide Nanocomposites. J Appl Polym Sci, 116, 2658–2667. https://doi.org/10.1002/app.31787