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Abstract
The composting process of urban organic waste presents a microbial diversity depending on the phases of the process, which
makes it a source of isolation of thermostable and hydrolytic bacteria of biotechnological importance due to their ability to degrade
complex compounds such as cellulose, hemicellulose, and lignin. The objective of this study was to isolate and characterize
thermophilic cellulolytic bacteria, as well as to determine their hydrolytic and degradation potential. Microbial isolation was
performed from compost samples in the thermophile phase (47°C ± 2.25). Identification was performed by biochemical tests and
massive amplicon sequencing. Hydrolytic capacity was determined by hydrolysis halos and kinetic activity in 0.1% CMC medium
at 50°C. Bacillus sp. and Bacillus licheniformis strains were isolated from a thermophilic-phase composting system. These strains
exhibited specific growth rates of 0.1051 h-1 and 0.0794 h-1, doubling times of 6.5 h and 8.8 h, and hydrolysis halo diameters of
1.08 cm and 0.8 cm, respectively. The identification of bacteria of the Bacillus genus from the composting process highlights its
importance as a source of thermophilic bacteria with hydrolytic capacity for biotechnological applications.
Keywords: Isolation, composting, thermophilic, bacilli, cellulose, residue.

Resumen
El proceso de compostaje de residuos orgánicos urbanos presenta una diversidad microbiana en función de las fases del proceso,
lo que lo convierte en una fuente de aislamiento de bacterias termoestables e hidrolíticas de importancia biotecnológica debido a
su capacidad para degradar compuestos complejos como celulosa, hemicelulosa y lignina. El objetivo de este estudio fue aislar
y caracterizar bacterias celulolíticas termófilas, así como determinar su potencial hidrolítico y de degradación. El aislamiento
microbiano se realizó a partir de muestras de compost en fase termófila (47 °C ± 2.5). La identificación se realizó mediante
pruebas bioquímicas y secuenciación masiva de amplicones. La capacidad hidrolítica se determinó mediante halos de hidrólisis y
actividad cinética en medio CMC al 0.1 % a 50°C. Las cepas de Bacillus sp. y Bacillus licheniformis se aislaron de un sistema
de compostaje en fase termófila. Estas cepas presentaron tasas de crecimiento específicas de 0.1051 h-1 y 0.0794 h-1, tiempos
de duplicación de 6.5 h y 8.8 h, y diámetros de halo de hidrólisis de 1.08 cm y 0.8 cm, respectivamente. La identificación de
bacterias del género Bacillus en el proceso de compostaje resalta su importancia como fuente de bacterias termófilas con capacidad
hidrolítica para aplicaciones biotecnológicas.
Palabras clave: Aislamiento, compostaje, termófilo, bacilos, celulosa, residuo.
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1 Introduction

Composting is an aerobic and exothermic process
where a complex microbial community carries out the
biotransformation of organic matter (Moreno et al.,
2021; Firone et al., 2023). Globally, 19% of urban
solid waste was recycled or composted (Cao et al.,
2023). Babu et al. (2021) indicated that composting
is the most applied biotechnology, due to its ease of
implementation and low cost. However, it has the major
disadvantage of requiring long operating times (from 4
to 6 months, attributed to the presence of lignocellulosic
material, pruning and gardening remains) to obtain
mature compost (Waqas et al., 2023).

In addition, due to the large volume of waste,
strategies to improve the process are being sought
(de Mendonça et al., 2021). In this sense, techniques
have been implemented to shorten composting times by
improving control parameters, such as aeration, turning
frequency (Getahun et al., 2012), optimization of the
C:N ratio (Guo et al., 2012; Nguyen et al., 2020),
and the type of bulking agent (carbon source). These
improvements aim to produce compost suitable for soil
enhancement or use as a biofertilizer (de Mendonça et
al., 2021).

Currently, one approach consists of the
bioaugmentation of microorganisms isolated from the
same process with specific metabolic characteristics
that can be used to accelerate the degradation process
(Babu et al., 2021), as well as in other production
processes (Zhu et al., 2020). The metabolic reactions
of the communities present in the composting process
generate energy and cause an increase in temperature
in the system leading to four phases: mesophilic (20-40
°C), thermophilic (40-60 °C), cooling (40-20 °C), and
maturation (room temperature) (Moreno et al., 2021).
The increase in temperature during the thermophilic
phase provides favorable conditions for the isolation
of thermotolerant microorganisms (Ince et al., 2020),
capable of growing at temperatures between 40 – 120
°C (thermophilic microorganisms), which produce
thermostable enzymes, proteins that retain their
structure and function at high temperature (Kanekar &
Kanekar, 2022). The ability of thermostable enzymes
to operate at high temperature is essential for the
transformation of organic waste, a process of great
relevance in areas such as waste management and
biofuel production (Banerje et al., 2020; Hussian &
Leong, 2023).

Thermophilic cellulolytic bacteria can be found in
various environments that present extreme temperature
conditions such as: dry tropical forests, deep-sea
hydrothermal vents, geothermal areas, and in artificial
systems such as waste treatment plants and compost
piles (Kanekar & Kanekar, 2022; Firone et al., 2023).
Authors such as López et al. (2021) stated that the

microbiota present in composting process includes
thermophilic microorganisms capable of degrading
lignocellulose-rich residues. These microorganisms are
of great biotechnological interest due to their resistance
to chemical denaturation, their wide optimal pH range,
and their broad substrate specificity (Hussian & Leong,
2023). Additionally, bacteria have shorter doubling
times measured in days, compared to fungi, which may
take weeks to double (Wang & Kuzyakov, 2024); these
characteristics make bacteria valuable in industrial and
biotechnological applications (Banerjee et al., 2020)
such as bioremediation, biorefinery and bioplastic
production (Li & Huo 2025).

Authors such as Siu-Rodas (2018) reported the
isolation of three thermophilic strains (optimal growth
at 60 ° C) capable of growing in acidic pH (4-5) with
endocellulase and exocellulase activity and mentioned
that these strains have a potential application in the
extraction and clarification of juices as well as paper
bleaching. Anguiano (2019) has isolated compost
bacteria from organic waste in the thermophilic
phase (e.g., Bacillus pumilus, Stenotrophomonas and
Bacillus subtilis) which showed growth in a selective
carboxymethylcellulose medium. While Finore et al.
(2023) reported the isolation of lignocellulosic bacteria
from sawdust and bovine manure compost, associated
with the thermophilic phase of the process (55°C).
Although the isolation of lignocellulosic bacteria is
reported in the literature, few reports are available
regarding their metabolisms, kinetics and doubling
times with carboxymethylcellulose as the sole carbon
source. Therefore, this study evaluated the isolation and
phenotypic, genotypic, and metabolic characterization
of cellulolytic thermophilic bacteria from composting.

2 Materials and method

2.1 Obtaining composting samples

The compost used in this study was produced from
urban organic waste (a heterogeneous mixture of fruit
peels, raw and cooked vegetables, green leaves, and
food scraps) combined with black soil at a 2:1 ratio.
The mixture was placed in a sealed container measuring
32 cm in width, 53 cm in length, and 26.5 cm in depth,
equipped with a hermetic lid and a leachate collection
system.

Composting was performed in duplicate with daily
turning to ensure proper aeration. Each compost bin
was loaded with 2.9 kg of black soil as a bulking agent
(initial moisture content: 30%) and 5.8 kg of urban
organic waste (initial moisture content: 85%). The
temperature and pH were monitored with an electronic
soil meter (4 in 1 Soil Survey Instrument) and the
moisture with a Tempo Disc ™ Bluetooth Sensor
for temperature. Chemical oxygen demand (COD)
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was measured using the closed reflux method with
HACH® COD reagent vials (Method 8000), following
the procedure outlined in the Mexican standard NMX-
AA-52-1985 (SEMARNAT, 1985). Inorganic nitrogen
species were measured using the HACH Kit 8039
for nitrate, the HACH Kit 8507 for nitrite, and an
ammonium-selective electrode (Phoenix Electrode
Company, USA) for NH+4 quantification. The samples
for isolation were taken from the thermophilic phase of
the composting system on day 80, when it presented an
average temperature of 47°C ± 2, moisture of 67.8 ±
0.51%, and pH of 8.32 ± 0.13.

2.2 Microbial isolation

During the thermophilic phase, 5% of the compost was
sampled. From this portion, a 5 g sample was taken to
activate the microorganisms in 45 ml of sterile nutrient
broth (DB BIOXON®). The sample was then incubated
at 50°C for 24 hours. Subsequently, 1 ml of activated
culture was inoculated into nutrient agar plates using
the pour-plate technique and incubated for 48 hours at
50°C. Colonies with distinct morphologies were then re-
streaked into nutrient agar plates using the cross-streak
method to characterize their morphology. Additionally,
the culture was plated on carboxymethylcellulose
(CMC) agar to isolate bacteria with cellulolytic activity.
These plates were incubated at 50°C for 48 hours (Lynd
et al., 2022).

2.3 Macroscopic and microscopic
characterization

The macroscopic morphological characterization of
the strains was carried out following the guidelines
provided in Bergey's Manual of Systematics of Archaea
and Bacteria, which offers updated descriptions
of prokaryotic taxa (Rainey, 2015). Microscopic
morphology was observed through a Nikon Eclipse
E200 optical microscope from a Gram-stained smear
(Madigan et al., 2004).

2.4 Metabolic characterization

Strains isolated on 0.1% CMC agar plates, with
less than 72 hours of growth, were sub-cultured
on blood agar, MacConkey, and tryptic soy agar
(TSA) and incubated for 24 hours at 37°C to
assess their biochemical capacity for hemolysis
and lactose hydrolysis. Following this, the strains
underwent a series of biochemical tests, including
triple sugar iron (TSI), citrate utilization, urea
hydrolysis, motility-indole-ornithine (MIO), sulfate
reduction-indole-mobility (SIM), nitrate reduction,
sucrose, glucose, mannitol, lactose, gelatin liquefaction,
hemolysis of bovine erythrocytes, and growth in 7.5%
NaCl. Subculture and biochemical tests were carried
out in duplicate and the results were interpreted based

on Microbiological Diagnosis by Elmer W. Koneman
(Koneman, 2012).

2.5 Determination of cellulolytic activity

Strains grown on 0.1% CMC agar were re-plated by
puncturing onto CMC agar and incubated for 24 hours
at 50°C. Congo red dye (1% w/v) was added and
left to act for fifteen minutes. Excess dye was then
removed and the plates were rinsed with a 0.1 M
NaCl solution for 15 minutes. The plates were then
left to rest for 24 hours at 4°C and the diameter of
the cellulolytic activity ring was measured (Rodríguez
& Llenque, 2016). The cellulolytic index (CI) was
determined using Equation 1, as reported by Zainudin
et al. (2022), based on the colony growth diameter and
the diameter of the hydrolysis halo. Additionally, the
efficiency of carboxymethylcellulose degradation was
confirmed through COD measurements.

CI =
(Total halo diameter−Growth colony diameter)

Growth colony diameter
(1)

2.6 Genotypic characterization

Bacterial DNA from strains with cellulolytic activity
was extracted using the Wizard Genomic DNA
Purification kit A1120. High-molecular weight DNA
(approximately 20 000 bp) was separated by horizontal
electrophoresis in 1% agarose gel, stained with SYBR
safe (5 µg/mL) and visualized using a molecular weight
marker (100 to 3000 bp).

For the amplification and purification of the 16S
rRNA gene, a 10-1 dilution of the genomic DNA was
prepared. PCR amplification was performed according
to Aguirre-Garrido et al. (2012) using universal
primers 27F (5'-AGAGTTTGATCCTGGCTCAG-3')
and 1492R (5'-GGTTACCTTGTTACGACTT-3'). The
PCR products were analyzed by electrophoresis on
a 1% agarose gel stained with ethidium bromide (5
µg/mL) and compared to a molecular size marker (100
to 3000 bp).

The amplification was confirmed by electrophoresis
and the PCR products were subsequently purified
using the Wizard SV Gel and PCR Clean-Up kit
(Promega; Ref: A9281). The purified DNA was
quantified by electrophoresis on a 1% agarose gel. After
amplification and purification of the 16S rRNA gene,
the samples were sent to MACROGEN Inc. (South
Korea) for sequencing.

Once the sequences were obtained, consensus
sequences were generated using the BioEdit sequence
alignment editor (Hall, 1999). Then, the sequences
were compared with the sequences available in the
NCBI GenBank database using the Basic Local
Alignment Search Tool (BLAST) program (www.ncbi.
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nlm.nih.gov/blast), as described by Aguirre-
Garrido et al. (2012). The E value was considered,
which is the measure used to estimate the degree of
sequence similarity; the closer to 0, the better the
alignment and the gaps that refer to the lack of a base
in the alignment (Choudhuri, 2014).

The alignment of the sequences was performed
using the software ClustalX (Larkin et al., 2007). The
editing and trimming of the alignments were performed
using the program SeaView (Gouy & Gascuel, 2010).
Finally, the phylogeny was inferred using the maximum
likelihood method and the HKY model (Hasegawa et
al., 1985). The evolutionary analyses were carried out
in MEGA version 12 (Kumar et al., 2024).

2.7 Microbial kinetics

Strains that showed halos of cellulose hydrolysis were
re-inoculated in serological flasks containing 50 ml of
0.1% CMC broth and incubated at 50°C for 50 hours.
For the kinetic study, serological flasks were used as
experimental units, to which 60 ml of 0.1% CMC broth
were added and inoculated with 10 ml of the previously
cultured strain. The experimental units were incubated
at 50°C and sampled at different times until reaching
growth asymptote. Cell growth was measured indirectly
by spectrophotometry (HACH-UV-vis Dr 6000) at a
wavelength of 600 nm, using the non-inoculated culture
medium as a blank. The microbial growth curve was
constructed, the specific growth rate (µ) was determined
using the exponential growth model and Gompertz
model (Trinidad, 2014), and the doubling time (Dt)
was calculated.

3 Results

3.1 Isolation, characterization and
identification

The initial compost had a weight of 8.7 kg, a pH
of 7.0, a moisture content of 75%, a temperature of
25°C, a COD of 2500 mg/L, and an inorganic nitrogen
concentration of 2.5 mg/L. The composting process
was successful in all phases and lasted 136 days,
yielding 2.7 kg of stable compost. The mesophilic
phase lasted 59 days, the thermophilic phase 40 days,
the cooling phase 7 days, and the maturation phase 30

days. The results of parameters in the different phases
of processing are presented in Table 1. According to
the parameters established in the national (NMX-AA-
180-SCFI-2018) and international standards such as
the Test Methods for the Examination of Composting
and Compost [U.S. Department of Agriculture (USDA),
2001] and the composting manual “European Compost
Network-Quality Assurance Scheme (ECN-QAS)
Manual for Compost and Digestate” [European
Compost Network (ECN), 2018], the final compost
presented a type 1 quality with a germination rate of
95%.

Among the compost samples in the thermolytic
phase, two microbial strains with well-defined
morphologies prevailed under the cultivation conditions
(i.e., 50°C and CMC medium 0.1%). These strains were
labeled as P11 and I12. Strain P11 (Figure 1A) formed
punctate colonies with smooth, shiny, raised edges
and a dry surface. Strain I12 (Figure 1B) exhibited
irregular colonies with convex, filamentous, shiny
edges and a dry surface. Regarding the microscopic
characterization, both strains were bacillary and
Gram positive (Figure 1C-D). Both strains underwent
biochemical analysis, the results of which are
summarized in Table 2. The results demonstrated the
metabolic capability to assimilate glucose, sucrose,
and mannitol as carbon sources, produce gas, and
reduce nitrates. Additionally, they exhibited motility
and growth in 7.5% NaCl (w/v) solution, proteolytic
activity on collagen (gelatin), and alpha-hemolysis on
bovine erythrocytes.

Based on the biochemical profiles and macro
and microscopic morphology, both strains were
presumptively identified as belonging to the genus
Bacillus, following the identification and classification
criteria outlined in Bergey's Manual (Vos et al.,
2011; Koneman, 2012; Mac, 2003). According to
the literature, bacteria of the genus Bacillus are
Gram positive microorganisms capable of forming
endospores, allowing them to survive in extreme
environments (Beladjal et al., 2018). They are
facultative aerobes and anaerobes (Harirchi et al., 2022)
and produce various enzymes, including proteases,
amylases, lipases, and cellulases (Yang et al., 2021a).
Additionally, genus Bacillus can metabolize a broad
range of carbon sources (e.g., glucose, sucrose, and
mannitol) and nitrogen sources (e.g., amino acids,
ammonium, nitrate, and nitrite) (Zaprasis et al., 2015).

Table 1. Physicochemical characteristics of the composting phases.

Phase Phase duration (Day) Temperature (°C) pH Moisture (%) COD (mg/L) Inorganic nitrogen (mg/L)

Mesophilic 1-59 29 ± 1 8.56 ± 0.14 67.91 ± 0.42 2450 ± 7.10 2.58 ± 0.20
Thermophilic 59-99 47 ± 2 8.32 ± 0.13 67.80 ± 0.51 1830 ± 14.11 13.58 ± 0.13

Cooling 99-106 30 ± 2 8.21 ± 0.12 80.00 ± 0.50 1013 ± 4.10 12.41 ± 0.21
Maturation 106-136 28 ± 1 7.4 ± 0.09 72.20 ± 0.46 689 ± 5.71 11.43± 0.14
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Figure 1. Colonial morphology on CMC 0.1% agar: A) strain P11 and B) strain I12; and Gram stain C) Strain P11
and D) Strain I12.

Table 2. Biochemical test of strains I12 and P11.
Biochemical test Strain I12 Strain P11

*Glucose, sucrose and lactose + +

*Gas production + +

*Hydrogen sulfide production - -
**Motility + +

**Indole - -
**Ornitjine - -
***Sulfate reduction - -
***Indole - -
***Motility + +

Urea - -
Citrate - -
Nitrous Broth (nitrate reduction) + +

Glucose + +

Mannitol + +

Sucrose + +

Lactose - -
Growth in NaCl 7.5% + +

Gelatin liquefaction + +

Hemolysis of bovine erythrocytes Alpha hemolysis Alpha hemolysis
*TSI test, ** MIO test, *** SIM test

The ability of the strains to degrade a wide range
of organic substrates suggests their capacity to ferment
carbohydrates and adapt to low-oxygen environments
by utilizing alternative electron acceptors such as
nitrate and fumarate (Rey et al., 2004; Blanco et
al 2024). Motility, likely mediated by flagella-like
structures (Ni et al., 2024), along with the ability to
grow in saline conditions, supports the halotolerant
nature of the strains (James et al., 2023). Regarding
their proteolytic activity on gelatin, this indicates
that the bacteria might produce serine proteases
and collagenase, which hydrolyze peptide bonds in
collagen (Contesini et al., 2018; Al-Bedak et al., 2023).
Additionally, their alpha-hemolytic activity suggests

the production of hemolysins, which partially degrade
red blood cell membranes (Muras et al., 2021).

Identification of strains P11 and I12 at the genus
or species level was performed by PCR extraction and
amplification of the 16S rRNA gene. For both strains,
the Figure 2A shows the DNA extract obtained, with
a weight of 20000 bp, and Figure 2B the amplified
and purified 16s rRNA gene products a weight of
1500 bp. Sequence analysis in GenBank showed a
97.80% similarity percentage for strain P11 with
Bacillus sp. and a 100% similarity percentage for strain
I12 with Bacillus licheniformis. Figure 3 shows the
phylogenetic tree where the clustering of B. sp. P11
and B. licheniformis I12 is shown in bold.

www.rmiq.org 5
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A B

Figure 2. Electrophoresis gel: (A) bacterial DNA extraction, (B) 16s rRNA gene amplification and purification.

Figure 3. Phylogenetic tree for Bacillus sp P11 and Bacillus licheniformis I12 inferred by the Maximum Likelihood
(ML) method using the nucleotide substitution model of Hasegawa-Kishino-Yano (1985). Twelve sequences with
1,363 positions were analyzed in the final data set. Numbers next to branches represent bootstrap support values,
indicating statistical confidence in the clustering of strains within each clade. These values reflect the percentage of
replicate trees in which associated taxa clustered (1,000 replicates).

The internal nodes of the phylogenetic tree indicate
the proportion of sites where at least one unambiguous
base is present in at least one sequence of each
descendant clade. The phylogenetic tree suggests that
both strains group into well-defined clades with high
similarity with other strains within the genus Bacillus,
although a separation in the tree is observed between
the identified strains despite having similar metabolic
characteristics. The genus Bacillus is highly diverse
and includes species with significant genetic variability,
even among those sharing similar physiological traits
(Xu & Kovács, 2024). Phylogenetic analysis based
on the 16S rRNA gene sequence can detect subtle
differences that phenotypic tests may overlook, which
explains the observed divergence between both genera
(Blanco et al., 2024)

These results are consistent with the literature
where the genus Bacillus is reported as the

predominant microorganism in the thermophilic phase
of composting (López et al., 2021; Yang et al.,
2021b). López et al. (2021) identified 159 Bacillus
and Firmicutes strains during composting process
of pruning waste and tomato crops, with Bacillus
licheniformis being one of the most abundant. In
the present work, by correlating the molecular and
morphological results of the strains, it was possible
to corroborate that the characteristics obtained for the
Bacillus licheniformis strain (I12), such as the lichen-
like and cream-coloured colonial morphology, are
consistent with the literature. However, it is important
to note that the genus Bacillus presents a wide range of
morphologies, which can vary between species (Logan
& Vos, 2015).
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Figure 4. Hydrolysis halos. A and B: Bacillus sp., (P11),
C and D: Bacillus licheniformis (I12).

3.2 Enzymatic activity and microbial
kinetics

Thermophilic microorganisms, such as Bacillus
licheniformis and Bacillus sp., play a crucial role
in composting systems. Through the production of
thermostable enzymes, particularly cellulases, they
facilitate the efficient degradation of cellulose and other
components of plant biomass (Kanekar & Kanekar,
2022; Zhu et al., 2020). In the present work, the isolated
and characterized strains (i.e., Bacillus licheniformis
and Bacillus sp.) showed their ability to degrade
cellulose through a halo formation test using 1% CMC
and Congo red agar plates. Both strains showed activity,
presenting halos with an average diameter of 10.85 mm
± 0.7 (Figure 4 A-B) and 8 mm ± 0.7 (Figure 2 C-D)
for Bacillus sp. (P11) and Bacillus licheniformis (I12),
respectively. The cellulolytic index was determined by
calculating the ratio between hydrolysis zone and the
colony diameter. The strains Bacillus sp. (P11) and
Bacillus licheniformis (I12) presented CI values of 9.9
± 0.8 and 7 ± 0.7, respectively. These results highlight
the cellulose-degrading ability of the isolated bacteria,
which contrasts with the findings of López et al. (2021).

López et al. (2021) conducted a study during the
thermophilic phase of composting (59.4°C ± 6), in

which they isolated 159 bacterial strains. The majority
belonged to the phylum Firmicutes (96%), including
Bacillus licheniformis, with smaller proportions
from Actinobacteria (2%) and Proteobacteria (2%).
However, the isolates exhibited only xylanase activity,
with no evidence of cellulolytic activity. Van (2009)
documented that Bacillus licheniformis presents
endoglucanase enzymes that cause the hydrolysis of
the glycosidic bonds of cellulose. Medison et al. (2023)
reported Bacillus hydrolysis halos of 5 to 20 mm
in a medium with sodium carboxymethylcellulose
through the Congo red test on CMC plates at culture
temperatures of 28°C. Li et al. (2023) reported the
isolation of Bacillus subtilis from silkworm excrement
with a hydrolysis halo diameter of 1.75 mm and CI of
3.5, using sodium carboxymethylcellulose as a carbon
source and cultivating it at 55°C with a pH of 6.
Vásquez & Millones (2023) reported the isolation from
the thermophilic phase of a compost with a temperature
of 53.5°C, pH of 6.8 and moisture of 54.8% of Bacillus
subtilis and Bacillus safensis subsp. safensis with a
cellulose hydrolysis halo diameter of 7.5 to 8.6 mm
and an CI of 0.33 to 0.9, respectively. The variations in
hydrolysis halo diameters and cellulolytic index reflect
the diversity of the strains and their adaptability to
different isolation environments (Hemati et al., 2021;
Jiang et al., 2021). In this context, the strains isolated in
this study are particularly significant, as they exhibited
a higher cellulolytic index, highlighting their potential
for efficient cellulose degradation.

The CMC degradation efficiency was obtained
from the initial and final COD of the strains grown
in 0.1% CMC. The degradation percentages obtained
for Bacillus sp (P11) and Bacillus licheniformis (I12)
were 0.60% ± 0.01 and 0.49% ± 0.02, respectively.
The role of Bacillus species in cellulose degradation
during the thermophilic phase of composting has been
previously reported (Ince et al., 2020). In this context,
Table 3 presents recalculated cellulose degradation
percentages based on enzymatic activity (U) values
reported in the literature. These values were estimated
using the conversion factor of 1U = 1.8016x104 g CMC
hydrolyzed, which reflects the amount of substrate
degraded per unit of enzyme activity.

Table 3. Comparison based on cellulose degradation percentage.
Reference Substrate Degradation (%) Phase temperature (°C) Bacteria associated with degradation

This work CMC 0.1% 0.69 47 Bacillus sp
0.49 Bacillus licheniformis

Ma et al. (2020) *CMC 150 U 0.03** 57.6 Bacillus
Liu et al. (2020) 11.6 U 0.2** 55 Bacillus
Zhang et al. (2021) 144 U 2.5** > 50 Firmicutes
U: amount of substrate consumed in µmol/min; *The use of CMC is indicated but not the concentration; **To compare the results obtained in
this work, the units were changed to mass units, considering the equivalence of 1U = 1.8016x104 g CMC hydrolyzed.
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Table 4. Comparison of the kinetic parameters obtained through the Gompertz model and the exponential growth
model.

Bacillus sp. (P11) Bacillus licheniformis (I12)

Model µ (h−1) Dt (h) R2 µ (h−1) Dt (h) R2

Exponential 0.105 ± 0.010 6.5 ± 0.4 0.93 0.420 ± 0.005 1.6 ± 0.5 0.80
Gompertz 0.105 ± 0.005 6.5 ± 0.3 0.99 0.079 h−1 ± 0.010 8.8 ± 1.0 0.97

These results confirmed that the strains isolated
in this work have a high potential for cellulose
degradation. This capacity can be attributed
to its enzymatic production and adaptation to
composting conditions, reinforcing its applicability
in environmental biotechnology, particularly in the
treatment and valorization of organic waste through
composting (López et al., 2021).

On the other hand, Figure 5 shows the microbial
growth profiles of both strains, fitted to the Gompertz
model. Both strains exhibited a lag phase of
approximately 3 hours. Subsequently, Bacillus sp.
entered the exponential phase, which lasted until
hour 30, whereas Bacillus licheniformis maintained
exponential growth until hour 40. Table 4 shows
the specific growth rate (µ) and doubling time
obtained using both the Gompertz and exponential
growth models. For Bacillus sp., both models yielded
similar values for growth rate and doubling time.
In contrast, for Bacillus licheniformis, the Gompertz
model provided a better fit to the experimental data,
as indicated by a higher correlation coefficient (R2 =

0.97).
Recent studies on the kinetic parameters of these

strains are limited in the literature. Among the limited
data available, the Dt varies based on culture conditions.
Errington & Aart (2020) reported that Bacillus had
a Dt of 0.33 hours at 35°C in a nutrient medium.
Da Silva et al. (2021) reported a doubling time
of 6.3 hours at 50°C when using glucose alone
or in combination with casein as a carbon source.
The influence of culture conditions, particularly the
availability of carbon and nitrogen sources, on the
growth of thermophilic bacteria is well documented.
For instance, Da Silva et al. (2021) and O'Hair et al.
(2020) reported doubling times of 11.5 hours and 0.43
hours, respectively, for Bacillus licheniformis grown on
CMC and casein. Similarly, Hanlon & Hodges (1981)
found that Bacillus licheniformis cultured at 37°C with
glucose and ammonium chloride had a doubling time
of 1 hour. However, when the nitrogen source was
replaced with sodium nitrate, alanine, or glutamic acid,
the doubling time increased to 1.65, 1.77, and 1.90
hours, respectively, demonstrating that both growth rate
and doubling time are highly dependent on substrate
availability. Liu et al. (2023) further emphasized
that culture conditions significantly affect microbial
kinetics, with Bacillus species maintaining their growth
and degradation capacity at high temperatures, though
their kinetic behavior varies depending on nutrient

Figure 5. Cell growth curve and Gompertz model fitting
of strain B. sp P11 and B. licheniformis I12.

availability. Da Silva et al. (2021) highlights the
importance of composting systems as valuable sources
for isolating microorganisms, as the diversity of carbon
sources in these environments influences microbial
adaptation. In the case of lignocellulosic waste,
bacteria degrade complex compounds such as cellulose,
leading to shorter doubling times under similar culture
conditions, particularly when using CMC as a carbon
source (Zhu et al., 2021).

Understanding key kinetic parameters, such as
the specific growth rate and doubling time, provides
deeper insights into microbial metabolism on different
substrates. This knowledge enables better control of
fermentation processes, the optimization of bioreactor
design, and the development of strategies to enhance
the production of valuable enzymes (Straathof,
2023). Currently, research is focused on exploring
the applications of these bacterial enzymes in the
biodegradation of lignocellulosic waste to obtain
nanocellulose (Herrera-Basurto et al., 2024) and
the production of biofuels or biomaterials such
as polyhydroxyalkanoates (Castilla-Marroquín et al.,
2024)

Conclusions

The two thermophilic bacterial strains isolated from the
thermophilic phase of an urban organic waste compost
were identified through macro and microscopic,
metabolic, and genetic analyses as Bacillus sp. and
Bacillus licheniformis. Their kinetic characterization
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revealed growth rates and doubling times of 0.105 h−1

± 0.005; 6.5 h ± 0.3 and 0.0794 h−1 ± 0.01; 8.8 h
± 1, respectively. Both strains exhibited significant
cellulolytic activity, with hydrolysis halos of 10.85 mm
± 0.7 and 8 mm ± 0.7, and cellulolytic indexes of 9.9 ±
0.8 and 7 ± 0.7, respectively. These findings highlight
the critical role of composting systems as reservoirs
of thermostable cellulolytic microorganisms with
valuable biotechnological applications. Furthermore,
the metabolic and kinetic characterization of these
strains provides a strong foundation for future
research aimed at optimizing composting processes and
enhancing the bioconversion of lignocellulosic waste
into valuable products. Their potential application
in sustainable waste management and bioresource
recovery underscores their relevance in environmental
biotechnology.
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