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Abstract
The global energy crisis is currently a matter of great concern. With the rapid growth of the population, especially in emerging
economies, energy supply often struggles to keep pace with demand. Biogas production from water hyacinth (Eichhornia crassipes)
in an upflow anaerobic sludge blanket reactor offers a promising renewable energy alternative with multiple benefits. The anaerobic
digestion of organic matter generates biogas, which holds significant potential for electricity and heat generation and can also
be upgraded into a usable fuel. This study applied canonical correlation analysis to evaluate the relationship between sets of
independent and dependent variables involved in the biogas production process. A 20 L anaerobic reactor upflow fed with water
hyacinth pretreated with calcium oxide. Physicochemical variables were measured for the substrate, inoculum, effluent, and the
biogas produced. The analysis yielded a canonical correlation coefficient of 0.8467 between the two variable sets, indicating
a relatively strong relationship. Moreover, biogas production was estimated based on the input variables using the canonical
variables derived from the analysis. These results demonstrate that canonical correlation analysis is a valuable tool for monitoring
and optimizing the biogas production process, as it helps identify critical variables and their effects on reactor performance.
Keywords: anaerobic digestion, biogas, canonical correlation, canonical variables.

Resumen
La problemática energética mundial es un tema de gran relevancia en la actualidad. Con el rápido crecimiento de la población,
especialmente en las economías emergentes, la oferta a menudo no puede mantener el ritmo de la demanda energética. La
producción de biogás, a partir de lirio acuático (Eichhornia crassipes) en un reactor anaerobio de flujo ascendente es una alternativa
para producir energía renovable que ofrece múltiples beneficios. La digestión anaerobia de la materia orgánica produce biogás, el
cual tiene un gran potencial para su uso en la generación de energía eléctrica y calorífica, así como también puede ser transformado
en combustible. El presente trabajo aplicó el análisis de correlación canónica para evaluar la relación entre los conjuntos de las
variables independientes y dependientes del proceso de producción de biogás. Se utilizó un reactor anaerobio de flujo ascendente
de 20 L alimentado con lirio acuático pretratado con óxido de calcio donde se midieron las variables fisicoquímicas del sustrato, el
inóculo, el efluente y el biogás producido. Los resultados del análisis muestran un coeficiente de correlación canónica de 0.8467
entre ambos conjuntos, lo que indica una relación relativamente alta entre las variables, además se estimó la producción de biogás
en función de las variables de entrada usando las variables canónicas obtenidas por el análisis. Estos resultados muestran que el
análisis de correlación canónica es una herramienta útil para monitorear y optimizar el proceso de biogás, debido a que permite
identificar las variables críticas y su efecto sobre el rendimiento del biorreactor.
Palabras clave: digestión anaerobia, biogás, correlación canónica, variables canónicas.
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1 Introduction

Energy is essential for human well-being and daily
life. Many countries, especially those in the developing
world, face energy crises due to their heavy reliance on
fossil fuels (Mohammed et al., 2024). Approximately
80% of global energy is derived from fossil sources,
such as oil, coal, and natural gas, which are the primary
emitters of greenhouse gases, including carbon dioxide
(CO2) and methane (CH4). These gases significantly
contribute to global warming and environmental
degradation (El-Araby, 2024; Gupta et al., 2023; Hou
et al., 2023). In 2023, global natural gas consumption
reached nearly four trillion cubic meters (Statista,
2024). Considering this demand, there is an urgent
need to explore renewable energy alternatives, such as
biogas, that could potentially replace natural gas in the
future (Cisneros et al., 2021).

Biogas is produced through the anaerobic
degradation of organic matter and typically contains 55–
70% CH4, approximately 35–40% CO2, and nitrogen
(N2) (Jameel et al., 2024). It also includes trace
amounts of other gases such as hydrogen sulfide (H2S),
hydrogen (H2), ammonia (NH3), oxygen (O2), and
carbon monoxide (CO) (Khan et al., 2017). Biogas
can be utilized for electricity generation, heating, and
as a biofuel (Martínez-Gutiérrez, 2018).

Biowaste generated from commercial, industrial,
and household activities can be broadly classified
into two main fractions. The first is the organic
fraction of municipal solid waste (OFMSW), primarily
consisting of food scraps and kitchen waste, and
typically representing the largest share of the total
waste stream. The second is the lignocellulosic or
vegetal fraction, which comprises plant residues from
public and private green areas. Proper separation
and management of both fractions, particularly the
OFMSW, is essential for enhancing waste valorization
and minimizing landfill impacts, as evidenced in
recent urban waste management studies (Rolewicz-
Kalińska et al., 2020; Alves et al., 2023). Effective
management of these waste streams is critical due to
their environmental impact, including greenhouse gas
emissions and contamination issues (Triviño-Pineda et
al., 2024). The anaerobic digestion of organic waste
enables resource recovery by producing biogas and
digestate, thereby closing the loops of energy and
nutrient cycles (González et al., 2024). This process
is framed within the circular economy model, in
which waste is reintegrated as a resource in productive
systems, promoting more efficient and sustainable use
of natural resources (Stylianou et al., 2023).

In recent years, the use of lignocellulose-rich
organic waste for anaerobic digestion aimed at
producing biotechnologically valuable byproducts such
as methane (CH4) has become an increasingly complex

challenge (Amiri & Karimi, 2018). Currently, the
use of water hyacinth (Eichhornia crassipes) as a
substrate to produce these byproducts has emerged as
an efficient and cost-effective alternative for biogas
generation. This invasive aquatic weed can double
its biomass within 6 to 28 days, forming dense
mats on the water's surface. These mats obstruct
sunlight penetration, leading to eutrophication and the
eventual degradation of aquatic ecosystems (Pottipati
et al., 2021). Biogas production is carried out
through anaerobic digestion, a process composed
of four sequential stages: hydrolysis, acidogenesis,
acetogenesis, and methanogenesis. During this process,
the substrate is degraded by a consortium of facultative
and strict anaerobic microorganisms operating under
controlled conditions, such as those provided by
upflow anaerobic sludge blanket (UASB) reactors
(Chiemchaisri & Visvanathan, 2018; Themelis & Uloa,
2007).

Optimizing process parameters, such as inoculum
concentration and incubation temperature, significantly
contributes to enhancing biogas production (Armah
et al., 2018). According to Kumar et al. (2019),
mesophilic conditions (40°C) are more favorable for
biogas generation compared to lower temperatures,
such as 30 °C. Biogas production is closely linked to
the diversity and dynamics of the anaerobic digestion
process, which are strongly influenced by operational
factors, including temperature, pH, hydraulic retention
time, carbon-to-nitrogen (C/N) ratio, organic loading
rate, substrate composition, and nutrient bioavailability
(Nakasima-López et al., 2017). Therefore, microbial
community diversity and activity are critical variables
that can be affected by environmental and biological
factors (Rehman et al., 2019). However, monitoring
and analysis of these variables in anaerobic reactors
remain limited.

In this context, multivariate analytical tools such
as canonical correlation analysis (CCA) have gained
importance, as they enable the simultaneous evaluation
of multiple variables, facilitating the identification of
those that most significantly influence the process
(Badii & Castillo, 2017). CCA stands out as a powerful
multivariate technique for assessing and optimizing
the performance of anaerobic bioreactors, enabling
the identification and interpretation of relationships
between multiple input and output variables and
offering a comprehensive view of process dynamics.

This study applied CCA to improve the control and
management of the anaerobic digestion (AD) process.
By examining both input and output variables, CCA
enabled the identification of relationships between
independent variables and the output variable (biogas),
thereby clarifying their impact on biogas production.
The findings highlight the potential of CCA to
identify critical variables and enhance overall system
performance (Rehman et al., 2019; Zhuang et al., 2020;
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Hotelling, 1936; Molina et al., 2019).
Therefore, this study contributes to current

knowledge by applying CCA to identify the
most relevant physicochemical predictors of biogas
production in a mono-digestion system using lime-
pretreated water hyacinth. Unlike traditional studies
based on bivariate correlations or univariate models, the
multivariate approach employed here enables a more
comprehensive assessment of operational interactions
under real-world conditions. This type of analysis
has proven to be more robust and representative in
anaerobic systems, as it simultaneously captures the
complex dynamics between operational parameters
and biological responses, as reported by Otto et al.
(2024) in a comparative study of 80 full-scale digesters.
The findings of this work support the development
of predictive frameworks for process monitoring and
control, particularly in systems that utilize invasive
aquatic biomass under mesophilic conditions.

2 Materials and methods

The methodological framework employed in this
study integrates the design and operation of a pilot-
scale UASB bioreactor fed with water hyacinth
pretreated with calcium hydroxide, along with
standardized analytical procedures for measuring pH,
electrical conductivity, and alkalinity across various
system streams. Physicochemical characterization
was complemented by a multivariate statistical
approach based on CCA, which enabled the
identification of optimal statistical projections between
the sets of independent and dependent variables. The
implementation of this methodological strategy ensures
the statistical robustness and practical relevance of
the findings under mesophilic conditions, which are
representative of real-world operations.

2.1 Bioreactor characteristics

The system from which data were obtained for the
canonical correlation analysis (CCA) was a pilot-
scale upflow anaerobic sludge blanket (UASB) reactor
(Figure 1), constructed from polymethylmethacrylate
(acrylic) with a total volume of 33 L. A valve is located
at the bottom of the reactor for purging sludge and
effluent, connected to a diffuser that ensures even
distribution of the feed within the reactor. At the top, the
effluent outlet is equipped with a gas trap to prevent the
loss of generated biogas. Additionally, a biogas outlet
is located at the top and is connected to an external
high-density polyethylene (HDPE) system with a
20 L capacity for biogas storage and quantification.
Biogas volume is measured by liquid displacement.

Figure 1. Schematic diagram of the pilot-scale UASB
reactor. (1) UASB reactor; (2) Effluent outlet; (3)
Sludge purge outlet; (4) Electric heating element; (5)
Temperature sensor; (6) Temperature controller; (7)
Biogas storage unit; (8) Displaced liquid collector; (A)
Influent (feed); (B) Sludge purge; (C) Biogas outlet;
(D) Effluent (discharge); (E) Liquid displacement.

The bioreactor is equipped with a temperature control
system designed for automatic regulation, utilizing an
I-Power Electronics STC-1000 controller. Two 60 W
heating elements are installed inside the reactor to
maintain a constant operating temperature of 35°C ± 1
°C.

2.2 Substrate characteristics

The water hyacinth used as a substrate in the
bioreactor was collected from the “Grande” River,
which runs through the city of Morelia, Michoacán, at
coordinates 19.685611, -101.242114. After collection,
the biomass underwent a pretreatment process that
involved grinding the hyacinth in a disc mill (Estrella)
to obtain particles with diameters ranging from 0.2 to
0.8 cm. Subsequently, a CaO solution heated to 60 °C
was added to solubilize the organic matter. The mixture
was then filtered to separate larger lignocellulosic
fibers.

The preparation and feeding procedure of the
substrate is illustrated in Figure 2. After harvesting,
the water hyacinth was mechanically processed using
a disc mill to reduce particle size and then filtered to
eliminate coarse lignocellulosic residues. The resulting
homogeneous slurry was transferred to the bioreactor
using a peristaltic pump and combined with the
inoculum before anaerobic digestion. The system
incorporated temperature regulation at 35 °C and
included dedicated outlets for biogas collection, effluent
discharge, and sludge purging.

The filtered substrate was used to feed the UASB
reactor, which had a total volume of 5 L. The volume
of biogas produced was determined by measuring the
volume of displaced liquid (Walker et al., 2009).
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Figure 2. Schematic representation of the feeding and operation process of the UASB bioreactor. Water hyacinth
is initially processed in a disc mill to reduce particle size, followed by filtration to remove coarse lignocellulosic
fibers and obtain a homogeneous substrate. This filtered substrate is then pumped into the reactor and mixed with the
inoculum. The bioreactor operates under mesophilic conditions (35 °C), maintained by an internal heating system and
monitored via a temperature sensor. During anaerobic digestion, the generated biogas is collected and quantified by
liquid displacement in an external gas collection and measurement system. The system also features separate outlets
for sludge purge and effluent discharge, enabling operational monitoring and maintenance.

2.3 Analytical parameter determination

pH and conductivity measurements were conducted
at the influent, effluent, and inoculum valves every
72 hours using a multiparameter instrument (Thermo
Scientific Orion Star A325 portable pH/conductivity
meter), by Mexican standards NMX-AA-008-SCFI-
2016 and NMX-AA-093-SCFI-2000, respectively.

Alkalinity was determined in the influent, effluent,
and inoculum of the reactor, following the NMX-AA-
036-SCFI-2001 standard, with a frequency of every
72 hours, to calculate the total alkalinity as CaCO3 in
mg/L.

2.4 Canonical correlation analysis

Before conducting the canonical correlation analysis,
the dataset, consisting of 22 paired observations
collected over a 258-day monitoring period, was
evaluated to ensure compliance with statistical
assumptions. All variables were standardized using z-
score transformation to eliminate the effect of differing
measurement scales. Multicollinearity was assessed
by analyzing the Pearson correlation matrix of the
independent variable set. No correlation coefficients
exceeded |r| = 0.9, indicating no significant redundancy
among predictors (Hair et al., 2009). Additionally,
potential outliers were identified graphically using
boxplots for all ten variables included in the
model. Although some mild outliers were observed,
particularly in inoculum alkalinity and effluent pH,
no extreme values were detected. Consequently, all

data points were retained in the canonical correlation
analysis, as their presence did not compromise the
robustness or validity of the model.

Despite the moderate sample size (22 paired cases),
the model meets established statistical criteria for
multivariate analysis. Recent findings by Helmer et
al. (2024) suggest that canonical correlation can yield
stable results in moderately sized datasets, particularly
when strong relationships exist between variable sets.
Furthermore, the widely accepted "one-in-ten" rule
recommends a minimum of 10 observations per
variable, a condition fulfilled in this study by including
10 variables and surpassing the 1:1 ratio. Therefore,
the statistical model complies with the methodological
requirements for its application.

All statistical analyses, including canonical
correlation analysis, were performed using the
Statistica® software.

The use of linear multivariate statistical analysis
allows for the identification of optimal correlations
between two sets of variables. According to Hair et al.
(2009), this type of correlation simultaneously links p
dependent variables with q independent variables by
linearly combining both sets to establish two weight
vectors that maximize the corresponding correlation
coefficient.

The variables x1, x2, . . . , xp are grouped to form an
independent set (X), which generates the composite
variable (U). Similarly, the variables y1,y2, . . . ,yq form
the dependent set (Y), resulting in the composite
variable(W). Both U and W are referred to as canonical
variables.
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These canonical variables are obtained by
multiplying the transposed weight vectors a =(
a1,a2, . . . ,ap

)
y b =

(
b1,b2, . . . ,bq

)
by the variable sets

X and Y , respectively. The result defines their linear
combinations with the maximum possible variance,
based on the orthogonality between the canonical
variables.

U = aT X =
(
a1,a2, . . . ,ap

)
x1
x2
...
xp


= a1x1 + a2x2 + . . .+ apxp (1)

W = bT Y =
(
b1,b2, . . . ,bq

)
y1
y2
...
yq


= b1y1 + b2y2 + . . .+ bqyq (2)

Based on both results, the sample variance-covariance
matrix (S ), of order p x q, is established, noting that
CYX =CT

XY

S =
(
CXX CXY
CYX CYY

)
(3)

Thus, the correlation coefficient between the canonical
variables is referred to as the canonical correlation
coefficient, and is defined as follows:

corr(U,W) =
cov(U,W)

√
var(U)

√
var(W)

=
aT CXYb√

aT CXXa
√

bT CYYb
(4)

In the above equation, the denominator imposes two
normalization constraints, both of which determine the
weight vectors that favor maximization (Khalil et al.,
2011).

var(U) = aT CXXa = 1 (5)

var(W) = bT CYYb = 1 (6)

Additionally, both constraints standardize the canonical
variations, thereby establishing the solution to the
canonical correlation problem as the maximization of
the numerator.

corr(U,W) = aT CXYb (7)

To achieve this, a two-parameter Lagrangian function
is used, which enables the calculation of multivariate
gradients by considering the solution weight vectors.

L(a,b) = aT CXYb− τ1
(
aT CXXa− 1

)
− τ2

(
bT CYYb− 1

)
(8)

Each gradient requires the partial derivative of
Equation (8) to be defined with respect to each vector,
respectively.

∂L(a,b)
∂a

=CXYb− 2τ1CXXa = 0

CXYb = 2τ1CXXa (9)
∂L(a,b)
∂b

=CT
XYa− 2τ2CYYb = 0 (10)

CT
XYa = 2τ2CYYb (11)

Both gradients yield a system of equations which, when
solved, define the weight vectors a and b that maximize
the numerator in Equation (7).

This solution is based on Equations (5) and (6),
which are respectively multiplied by the transposed
vectors from Equations (9) and (11) for simplification.

(CXYb = 2τ1CXXa)aT

aT CXYb = 2τ1 (12)(
CT

XYa = 2τ2CYYb
)
bT

bT CT
XYa = 2τ2 (13)

The algebraic simplification of the second term in
Equations (12) and (13) defines the scalar of the
solution, ensuring that the normalization constraints
are satisfied (

aT CXYb
)T
= bT CT

XYa = 1 (14)

The equations are equivalent, defined as 2τ1 =
2τ2, which represent the eigenvalue (λ). Therefore,
Equations (9) and (11) can be rewritten in their
simplified form

CXYb = λCXXa (15)

CT
XYa = λCYYb (16)

By solving for vector, a from Equation (15) and
substituting it into Equation (16), the system is reduced
as follows:

CT
XY

[
1
λ

C−1
XXCXYb

]
= λCYYb

C−1
YYCT

XYC−1
XXCXYb− λ2b = 0 (17)

Analogously, we obtain:

C−1
XXCXYC−1

YYCT
XYa− λ2a = 0 (18)

Finally, solving Equations (17) and (18) yields the
vectors a and b, which represent the eigenvectors
that maximize the correlation between the canonical
variables for the given variable sets in the problem.
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Figure 3. Normalized biogas production (NL) over
a 258-day mono-digestion of calcium hydroxide
pretreated water hyacinth. Biogas was measured every
72 h and standardized to 25 °C and 1 atm. Temporal
fluctuations highlight periods of low production and
recovery, corresponding to shifts in physicochemical
parameters.

3 Results and discussion

The canonical correlation analysis enabled the
identification of significant relationships between the
input and output variables of the bioreactor over a 258-
day monitoring period, with measurements taken every
72 hours (Figure 3).

The evaluated variables included pH, electrical
conductivity, and alkalinity of the substrate and
inoculum as input factors, while pH, electrical
conductivity, alkalinity, and biogas production were
considered as output variables (Table 1 and Table
2). These variables were selected based on their
operational relevance and their documented influence
on anaerobic digestion performance (Ali et al., 2021;
Chen et al., 2024). They serve as key indicators of
buffering capacity, ionic strength, and microbial activity
in anaerobic systems. They are easily measurable
through routine monitoring, making them suitable for
real-time decision-making and process control.

Table 1. Input variables used in the canonical correlation analysis.

Periods Initial conditions
Days Substrate

pH (SpH)
Inoculum
pH (IpH)

Substrate
electrical

conductivity
(SE.C) µS/cm

Inoculum
electrical

conductivity
(IE.C) µS/cm

Substrate
alkalinity

(SA) g
CaCO3/L

Inoculum
alkalinity

(IA) g
CaCO3/L

0 10.60 8.01 4.96 3.52 4.30 11.00
12 11.21 8.08 3.13 4.97 5.50 36.00
24 9.47 7.62 8.37 6.66 1.80 12.00
36 9.13 7.63 8.56 8.33 2.00 15.00
48 9.85 7.36 4.32 7.68 2.00 26.00
60 9.16 7.62 6.47 6.22 2.00 13.00
72 9.24 7.53 7.18 7.86 2.50 17.00
84 9.32 7.54 9.32 7.54 2.00 15.00
96 9.81 7.52 5.01 8.21 2.70 18.00
108 9.09 7.35 8.32 8.09 2.70 17.00
120 9.04 7.50 8.12 12.24 2.90 10.00
132 8.19 7.19 9.33 10.65 2.50 28.00
144 7.88 7.70 12.93 9.66 3.40 20.00
156 7.74 7.69 11.94 10.18 3.10 20.00
168 7.37 7.73 4.76 9.00 1.60 19.00
180 7.73 7.47 12.59 10.66 3.10 26.00
192 7.73 7.56 14.09 10.90 3.60 16.00
204 7.62 7.71 16.60 13.46 3.20 15.00
216 7.85 7.60 10.83 10.88 4.60 16.00
228 8.02 7.62 10.97 11.25 3.70 10.00
240 7.61 7.59 12.05 11.64 2.80 13.00
252 7.73 7.43 9.99 10.57 4.10 15.00
258 7.91 7.46 13.79 11.59 3.80 18.00
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Table 2. Response variables used in the canonical correlation analysis.

Periods Response variable
Days Biogas

produced
NL

Effluent pH
(EpH)

Effluent electrical
conductivity (EE.C)

µS/cm

Effluent alkalinity (EA)
g CaCO3/L

0 7.33 7.20 5.11 2.10
12 7.33 8.09 4.96 4.50
24 5.50 7.59 8.62 2.50
36 5.50 7.61 9.67 2.40
48 8.25 7.30 8.88 2.20
60 10.08 7.43 7.11 1.80
72 10.99 7.34 9.46 2.80
84 10.99 7.50 7.12 2.90
96 10.99 7.54 10.01 3.70

108 0.92 7.76 9.76 2.80
120 0.92 7.48 11.42 3.60
132 0.92 8.02 10.40 3.90
144 0.92 7.80 16.36 4.20
156 0.92 7.83 11.94 3.80
168 5.50 7.82 11.82 3.30
180 6.41 7.78 12.58 3.30
192 6.41 7.66 12.53 4.70
204 6.41 7.67 14.35 4.70
216 6.41 7.69 12.45 5.00
228 7.33 7.72 12.90 5.70
240 9.16 7.73 14.19 5.90
252 9.16 7.89 12.74 5.60
258 10.99 7.59 13.61 5.80

Their inclusion enabled a robust physicochemical
characterization of the system, which is essential
for developing multivariate statistical models, such
as canonical correlation analysis, that require well-
defined relationships between sets of independent and
dependent variables.

Figure 4. Illustrates the relationship between
the canonical variables U and W, obtained through
canonical correlation analysis, which identifies the
optimal linear combinations of input and output
variables that maximize their mutual correlation. The
linear fit between these variables resulted in a slope
of 0.9202 and a correlation coefficient of R² = 0.8467,
indicating that approximately 84.67% of the variability
in the dependent variable W can be explained by the
independent variable U. The canonical functions were
defined by the Equations (19) and (20):

U = a1SpH + a2IpH + a3SC.E + a4IC.E + a5SA + a6IA
(19)

W = b1EpH – b2EC.E – b3EA (20)

Each coefficient represents the statistical weight
assigned to the original variables within the canonical
combination. These functions serve as new axes in a
transformed space, analogous to a Cartesian coordinate
system, allowing for a graphical representation
of the observations projected onto these axes.

Figure 4. Canonical correlation analysis between the
recorded values of the physicochemical variables in
the bioreactor and the corresponding canonical variable
values for estimating biogas production.

This transformation facilitates the visual
interpretation of the multivariate relationship between
the sets of predictor and response variables, providing
a powerful tool for analyzing underlying structures in
complex systems.

The eigenvalues obtained for the canonical
functions were λ1 = 0.8467, λ2 = 0.2996, λ3 =

0.0973, and λ4 = 0.0697, with λ1 representing the
highest explained variance. These results highlight
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the importance of the first canonical function, which
accounts for the most significant portion of the
relationship between the two variable sets. The
coefficients of the first weight vectors were a = (-
0.2211, 0.0801, 0.3313, 0.5170, 0.1056, -0.0717) and
b = (-0.0327, 0.0064, 0.8338, 0.2094), indicating that
substrate electrical conductivity and alkalinity are key
factors influencing biogas production (Cao et al., 2019).
This finding is consistent with previous studies that
have identified electrical conductivity as a potential
indicator of microbial activity in anaerobic digestion
systems (Callegari et al., 2025). Additionally, Alvarado-
Reyna et al. (2024) demonstrated that electrical
conductivity displays greater sensitivity and earlier
deviation compared to conventional indicators such
as pH or methane content, reinforcing its value as a
predictive variable within multivariate models such as
canonical correlation analysis.

This finding suggests that the electrochemical
characteristics of the environment, represented
by electrical conductivity, may modulate nutrient
availability and microbial performance in anaerobic
systems. Similar associations have been reported by
Callegari et al. (2025) and Hasani et al. (2025), who
linked shifts in conductivity and alkalinity to microbial
community adaptation and process efficiency under
varying loading conditions. This reinforces the role of
these variables not only as statistical predictors but also
as functional indicators of biological responses.

These relationships show that increases in both
electrical conductivity and alkalinity may reflect not
only changes in buffering capacity and ion exchange

but also shifts in microbial metabolic networks and
community structure, which in turn impact biogas yield
and system stability. For instance, empirical dynamic
modeling of anaerobic digesters converting sucrose
has revealed that temporal variations in microbial
interaction networks (particularly among fermentative,
syntrophic, and methanogenic functional groups)
closely match performance dynamics, such as hydrogen
concentrations and methane production, throughout
operation (Chang et al., 2025; Goux et al., 2015).
Highlighting similar mechanisms in lignocellulosic
digestion, Al Hasani et al. (2025) reported that
modifications in the electrochemical matrix enhance
direct interspecies electron transfer (DIET), promoting
microbial resilience and improving methane output
(Negi et al., 2025). These findings validate that the
observed statistical associations with conductivity
and alkalinity are supported by functional microbial
responses, reinforcing their usefulness for both process
monitoring and mechanistic understanding.

Based on the canonical correlation equation derived
from the analysis, a biogas production volume of
3.2579 L was estimated under the initial experimental
conditions. However, by modifying the substrate’s
electrical conductivity and alkalinity values in Equation
(21), the calculations suggest a potential biogas yield of
up to 18.48 L. What suggests that proper regulation of
these variables could optimize system performance,
aligning with previous studies that highlight the
importance of alkalinity in maintaining the stability
of the anaerobic digestion process (Soto et al., 2021).

Biogas = 0.9202 (a1 S pH + a2IpH + a3S C.E+ a4IC.E +a5S A + a6IA)+0.0000000092349 (−b1EpH−b2EC.E −b3EA )
b4

(21)

Although the correlation values obtained suggest
a strong association between the input variables and
biogas production, it is essential to note that this
relationship does not imply causation. The 15.33%
variability in biogas production not explained by
the model may be attributed to other unaccounted
factors, such as substrate composition, temperature,
the presence of inhibitors, or specific microbial activity
within the bioreactor. This unexplained variance may
also reflect the heterogeneous composition of the
water hyacinth biomass or adaptive fluctuations in
the inoculum´s microbial consortia, as suggested
by Karouach et al. (2023). Recent studies have
demonstrated that substrate composition, particularly
the content of biodegradable organic matter, has a
significant impact on biogas production efficiency
(Chew et al., 2021).

Despite the high correlation observed, it is
important to recognize that biological systems exhibit
inherent variability that is not always fully captured

by mathematical models. Factors such as microbial
dynamics, substrate composition, and operational
conditions of the bioreactor remain sources of
uncertainty in predicting biogas yield. Therefore,
it is recommended that complementary studies be
conducted with greater control over internal system
variables to improve model accuracy and further
optimize the anaerobic digestion process.

In the present study, electrical conductivity and
alkalinity were identified as key predictors in the
canonical model. These variables were also identified
by Hernández-Eugenio et al. (2025) as being strongly
associated with shifts in microbial community structure,
particularly under varying organic loading rates and
varying buffering capacities. While their study focused
on microbial adaptation in co-digestion systems
using metagenomic tools, our approach applied a
statistical framework (canonical correlation analysis)
to a mono-digestion system using lime-pretreated
water hyacinth. This convergence reinforces the
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idea that physicochemical indicators such as those
measured in this study may also reflect microbial
activity and resilience. Therefore, the observed
statistical relationships gain biological relevance when
interpreted in the context of known microbial responses
to environmental conditions.

Another essential aspect to consider is the
applicability of the canonical equation in closed
biological systems. Although the predictions suggest an
increase in biogas production with specific adjustments
to the input variables, in practice, the ability to modify
these variables is limited by the system's intrinsic
conditions. Microbial dynamics within a bioreactor
can be influenced by subtle changes in pH or ion
concentration, which may result in adverse effects on
the system’s equilibrium (Martínez et al., 2016).

Finally, it is recommended to conduct controlled
experiments that evaluate not only the physical
and chemical variables but also those related to
the metabolism of the microorganisms present in
the bioreactor. The integration of more complex
mathematical models, incorporating factors such as
organic loading rate and microbial kinetics, could
provide a more accurate representation of the system
and enhance the predictive capacity of the proposed
canonical model. In this regard, future studies could
focus on the inclusion of additional variables and the
experimental validation of the predictions presented in
this work.

4 Conclusions

4.1 General conclusions

This study demonstrated the influence of input and
output physicochemical variables on biogas production
in an Upflow anaerobic sludge blanket (UASB) reactor,
using canonical correlation analysis as a multivariate
statistical tool. The results indicated that substrate
electrical conductivity and alkalinity are key factors
in system efficiency, with a predictive model that
accounted for 84.67% of the variability in biogas
production. These findings demonstrate the potential
of canonical correlation analysis as a valuable tool for
analyzing and optimizing biotechnological processes.

From a practical perspective, the ability to
adjust variables such as electrical conductivity and
alkalinity represents a viable strategy for enhancing
system performance. However, implementing these
adjustments under real operating conditions requires
controlled experimental trials to evaluate their impact
on microbial dynamics, system stability, and the quality
of the biogas produced.

Despite the model's high explanatory power, it
is essential to acknowledge that biological systems
exhibit inherent variability, which may limit the

predictive capacity of purely statistical approaches. To
strengthen the model's validity, factors such as substrate
composition, specific microbial activity, temperature,
and the presence of inhibitors should be considered in
future studies.

4.2 Future research directions

It is recommended that this statistical approach
be integrated with complementary tools such as
metagenomic analysis, kinetic modeling, and real-time
monitoring of critical parameters to develop more
precise and robust control strategies. Such integration
would facilitate the advancement toward more efficient,
stable, and scalable anaerobic digestion systems for
applications in organic waste treatment and renewable
energy generation.

Additionally, future research should integrate
the analysis of microbial consortium dynamics
or functional metabolic monitoring to validate
the statistical associations observed. What would
strengthen the causal interpretation of physicochemical
predictors, as proposed by Helmer et al. (2024).
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Nomenclature

x1, x2, . . . , xp Independent variables
y1,y2, . . . ,yq Dependent variables
X Vector grouping all independent

variables
Y Vector grouping all dependent

variables
U Canonical variate associated with

the independent variable set X
W Canonical variate associated with

the dependent variable set Y
a = (a1,a2, . . . ,ap)T Weight vector associated with the

independent variable set
b = (b1,b2, . . . ,bq)T Weight vector associated with the

dependent variable set
λ Eigenvalue representing the

squared canonical correlation
τ1, τ2 Lagrange multipliers used in the

optimization process
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CXX Covariance matrix of the
independent variables

CYY Covariance matrix of the
dependent variables

CXY Cross-covariance matrix
between independent and
dependent variables

CYX = CXY
T Transposed cross-covariance

matrix
S Combined covariance matrix

(block matrix of order p × q)
var(U), var(W) Variance of canonical variables

U and W
cov(U, W) Covariance between the

canonical variables
corr(U, W) Canonical correlation coefficient
L(a, b) Lagrangian function used to

solve the canonical correlation
maximization problem

∂L/∂a, ∂L/∂b Partial derivatives of the
Lagrangian concerning a and b
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