Revista Mexicana de Ingeniería Química, Vol. 22, No. 2 (2023), Alim2315


Structural and physicochemical properties of bio-chemical chitosan and its performing in an active film with quercetin and Phaseolus polyanthus starch

R.L. Zapata-Luna, G. Davidov-Pardo, N. Pacheco, T. Ayora-Talavera, H. Espinosa-Andrews, E. García-Márquez, J.C. Cuevas-Bernardino

https://doi.org/10.24275/rmiq/Alim2315


Abstract

 

Chitosan is a mucoadhesive and natural biodegradable polysaccharide derived by the deacetylation of chitin, such as an interesting biopolymer to form films and coatings for food preservation. The objective of this work was to isolate and characterize the structural and physicochemical properties of biochemical chitosan (BC) from shrimp (Litopenaeus vannamei) exoskeletons such as to develop an active film based on BC, native bean (Phaseolus polyanthus) starch (BS), and quercetin (Q). Further, the antioxidant activity and in vitro release tests were evaluated and compared with commercial chitosan (CC)- commercial tapioca starch (TS)-Q control film. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy of BC were used to calculate the crystallinity index (58.91%) and deacetylation degree (88.45%), respectively. Also, the zeta (ζ) potential and solubility values of the stock solution of BC were 45.72 mV and 99.86% at pH 4.0, respectively. The BCBSQ film presented the highest release of Q in simulated foods in ethanol solutions at 50% and 95% concentrations, which could be used as an active packaging film both in oil-in-water emulsions and fatty foods with potential antioxidant activity.

Keywords: biodegradable polysaccharide, biopolymers, in vitro release, shrimp exoskeletons.

 

References

  • Acosta-Ferreira, S., Castillo, O.S., Madera-Santana, J.T., Mendoza-García, D.A., Núñez-Colín, C.A., Grijalva-Verdugo, C., Villa-Lerma, A.G., Morales-Vargas, A. T., and Rodríguez-Núñez, J.R. (2020). Production and physicochemical characterization of chitosan for the harvesting of wild microalgae consortia. Biotechnology Reports, 28, e00554. https://doi.org/10.1016/J.BTRE.2020.E00554
  • Affes, S., Maalej, H., Aranaz, I., Acosta, N., Heras, Á., and Nasri, M. (2020). Enzymatic production of low-Mw chitosan-derivatives: Characterization and biological activities evaluation. International Journal of Biological Macromolecules, 144, 279–288. https://doi.org/10.1016/j.ijbiomac.2019.12.062
  • Agustinelli, S.P., Ciannamea, E.M., Ruseckaite, R.A., and Martucci, J.F. (2021). Migration of red grape extract components and glycerol from soybean protein concentrate active films into food simulants. Food Hydrocolloids, 120, 106955. https://doi.org/10.1016/J.FOODHYD.2021.106955
  • Assis, R.Q., Pagno, C.H., Stoll, L., Rios, P.D.A., Rios, A. de O., and Olivera, F.C. (2021). Active food packaging of cellulose acetate: Storage stability, protective effect on oxidation of riboflavin and release in food simulants. Food Chemistry, 349, 129140. https://doi.org/10.1016/J.FOODCHEM.2021.129140
  • Balderas-Gutiérrez, J.N., Hernández-Tenorio, C., Zavala-Arce, R.E., Pacheco-Sánchez, J.H., García-Gaitán, B., and Illescas, J. (2020). Chitosan films modified with glow discharge plasma in aqueous solution of pyrrole and its evaluation in the removal of red dye no. 2. Revista Mexicana de Ingeniería Química, 19(3), 1291–1299. http://www.redalyc.org/articulo.oa?id=62029966013%0Ahttp://rmiq.org/ojs311/index.php/rmiq/article/view/893
  • Brugnerotto, J., Lizardi, J., Goycoolea, F.M., Argüelles-Monal, W., Desbrières, J., and Rinaudo, M. (2001). An infrared investigation in relation with chitin and chitosan characterization. Polymer, 42(8), 3569–3580. https://doi.org/10.1016/S0032-3861(00)00713-8
  • Calderón-Castro, A., Aguilar-Palazuelos, E., Camacho-Hernández, I.L., Vega-García, M.O., Zazueta-Morales, J.J., Ruiz-Armenta X.A., and Fitch-Vargas, P.R. (2022). Effect of the storage relative humidity on the physicochemical properties of corn starch edible films obtained by a combination of extrusion process and casting technique. Revista Mexicana de Ingeniería Química, 21(3), 1–11. https://doi.org/10.24275/rmiq/Alim2917
  • Chavan, P., Sinhmar, A., Sharma, S., Dufresne, A., Thory, R., Kaur, M., Sandhu, K.S., Nehra, M., and Nain, V. (2022). Nanocomposite Starch Films: A New Approach for Biodegradable Packaging Materials. Starch - Stärke, 74(5–6), 2100302. https://doi.org/10.1002/STAR.202100302
  • Cocoletzi, H.H., Almanza, E.Á., Agustin, O.F., Nava, E.L.V., and Cassellis, E.R. (2009). Obtención y caracterización de quitosano a partir de exoesqueletos de camarón. Sociedad Mexicana de Ciencia y Tecnología de Superficies y Materiales A.C., 22(3), 57–60.
  • Cuevas-Bernardino, J.C., Leyva-Gutierrez, F.M., Vernon-Carter, E.J., Lobato-Calleros, C., Román-Guerrero, A., and Davidov-Pardo, G. (2018). Formation of biopolymer complexes composed of pea protein and mesquite gum – Impact of quercetin addition on their physical and chemical stability. Food Hydrocolloids, 77, 736–745. https://doi.org/10.1016/J.FOODHYD.2017.11.015
  • Daudt, R.M., Avena-Bustillos, R.J., Williams, T., Wood, D.F., Külkamp-Guerreiro, I.C., Marczak, L.D.F., and McHugh, T.H. (2016). Comparative study on properties of edible films based on pinhão (Araucaria angustifolia) starch and flour. Food Hydrocolloids, 60, 279–287. https://doi.org/10.1016/j.foodhyd.2016.03.040
  • Davidov-Pardo, G., Moreno, M., Arozarena, I., Marín-Arroyo, M.R., Bleibaum, R.N., and Bruhn, C.M. (2012). Sensory and consumer perception of the addition of grape seed extracts in cookies. Journal of Food Science, 77(12). https://doi.org/10.1111/j.1750-3841.2012.02991.x
  • de Barros Vinhal, G.L.R.R., Silva-Pereira, M.C., Teixeira, J.A., Barcia, M.T., Pertuzatti, P.B., and Stefani, R. (2021). Gelatine/PVA copolymer film incorporated with quercetin as a prototype to active antioxidant packaging. Journal of Food Science and Technology, 58(10), 3924–3932. https://doi.org/10.1007/S13197-020-04853-0/TABLES/2
  • Díaz-Cruz, C.A., Caicedo, C., Jiménez-Regalado, E.J., Díaz de León, R., López-González, R., and Aguirre-Loredo, R.Y. (2022). Evaluation of the antimicrobial, thermal, mechanical, and barrier properties of corn starch-chitosan biodegradable films reinforced with cellulose nanocrystals. Polymers 2022, Vol. 14, Page 2166, 14(11), 2166. https://doi.org/10.3390/POLYM14112166
  • El Knidri, H., El Khalfaouy, R., Laajeb, A., Addaou, A., and Lahsini, A. (2016). Eco-friendly extraction and characterization of chitin and chitosan from the shrimp shell waste via microwave irradiation. Process Safety and Environmental Protection, 104, 395–405. https://doi.org/10.1016/j.psep.2016.09.020
  • Espinosa-Andrews, H., Enríquez-Ramírez, K.E., García-Márquez, E., Ramírez-Santiago, C., Lobato-Calleros, C., and Vernon-Carter, J. (2013). Interrelationship between the zeta potential and viscoelastic properties in coacervates complexes. Carbohydrate Polymers, 95(1), 161–166. https://doi.org/10.1016/j.carbpol.2013.02.053
  • Ezati, P., and Rhim, J.W. (2021). Fabrication of Quercetin-Loaded Biopolymer Films as Functional Packaging Materials. ACS Applied Polymer Materials, 3(4), 2131–2137. https://doi.org/10.1021/ACSAPM.1C00177/SUPPL_FILE/AP1C00177_SI_001.PDF
  • He, X., Li, K., Xing, R., Liu, S., Hu, L., and Li, P. (2016). The production of fully deacetylated chitosan by compression method. Egyptian Journal of Aquatic Research, 42(1), 75–81. https://doi.org/10.1016/j.ejar.2015.09.003
  • Hurtado-Fernández, E., Pacchiarotta, T., Mayboroda, O.A., Fernández-Gutiérrez, A., and Carrasco-Pancorbo, A. (2014). Quantitative characterization of important metabolites of avocado fruit by gas chromatography coupled to different detectors (APCI-TOF MS and FID). Food Research International, 62, 801–811. https://doi.org/10.1016/j.foodres.2014.04.038
  • Jakubowska, E., Gierszewska, M., Szydłowska-Czerniak, A., Nowaczyk, J., and Olewnik-Kruszkowska, E. (2023). Development and characterization of active packaging films based on chitosan, plasticizer, and quercetin for repassed oil storage. Food Chemistry, 399, 133934. https://doi.org/10.1016/J.FOODCHEM.2022.133934
  • Jamróz, E., Cabaj, A., Tkaczewska, J., Kawecka, A., Krzyściak, P., Szuwarzyński, M., Mazur, T., and Juszczak, L. (2023). Incorporation of curcumin extract with lemongrass essential oil into the middle layer of triple-layered films based on furcellaran/chitosan/gelatin hydrolysates – In vitro and in vivo studies on active and intelligent properties. Food Chemistry, 402. https://doi.org/10.1016/J.FOODCHEM.2022.134476
  • Jiang, F., Li, X., Duan, Y., Li, Q., Qu, Y., Zhong, G., Qiu, M., Zhang, J., Zhang, C., and Pan, X. (2023). Extraction and characterization of chitosan from Eupolyphaga sinensis Walker and its application in the preparation of electrospinning nanofiber membranes. Colloids and Surfaces B: Biointerfaces, 222, 113030. https://doi.org/10.1016/J.COLSURFB.2022.113030
  • Kaya, M., Baran, T., Mentes, A., Asaroglu, M., Sezen, G., and Tozak, K.O. (2014). Extraction and Characterization of α-Chitin and Chitosan from Six Different Aquatic Invertebrates. Food Biophysics, 9(2), 145–157. https://doi.org/10.1007/S11483-013-9327-Y/FIGURES/8
  • Kowalczyk, D., Karaś, M., Kordowska-Wiater, M., Skrzypek, T., and Kazimierczak, W. (2023). Inherently acidic films based on chitosan lactate-doped starches and pullulan as carries of nisin: A comparative study of controlled-release and antimicrobial properties. Food Chemistry, 404, 134760. https://doi.org/10.1016/J.FOODCHEM.2022.134760
  • Kumari, S., Kumar Annamareddy, S.H., Abanti, S., and Kumar Rath, P. (2017). Physicochemical properties and characterization of chitosan synthesized from fish scales, crab and shrimp shells. International Journal of Biological Macromolecules, 104, 1697–1705. https://doi.org/10.1016/j.ijbiomac.2017.04.119
  • Lee, S.J., Gwak, M.A., Chathuranga, K., Lee, J.S., Koo, J., and Park, W.H. (2023). Multifunctional chitosan/tannic acid composite films with improved anti-UV, antioxidant, and antimicrobial properties for active food packaging. Food Hydrocolloids, 136. https://doi.org/10.1016/J.FOODHYD.2022.108249
  • Liang, J., Yan, H., Zhang, J., Dai, W., Gao, X., Zhou, Y., Wan, X., and Puligundla, P. (2017). Preparation and characterization of antioxidant edible chitosan films incorporated with epigallocatechin gallate nanocapsules. Carbohydrate Polymers, 171, 300–306. https://doi.org/10.1016/j.carbpol.2017.04.081
  • Li, H., Yu, Z., Cao, X., and Song, X. (2023). Chitosan modification and its synergism with clay to mitigate harmful algal blooms. Environmental Technology and Innovation, 29, 103028. https://doi.org/10.1016/J.ETI.2023.103028
  • Loganayaki, N., Siddhuraju, P., and Manian, S. (2013). Antioxidant activity and free radical scavenging capacity of phenolic extracts from Helicteres isora L. and Ceiba pentandra L. Journal of Food Science and Technology, 50(4), 687–695. https://doi.org/10.1007/S13197-011-0389-X/FIGURES/5
  • Martín‐lópez, H., Pech‐cohuo, S.C., Herrera‐pool, E., Medina‐torres, N., Cuevas‐bernardino, J.C., Ayora‐talavera, T., Espinosa‐andrews, H., Ramos‐díaz, A., Trombotto, S., and Pacheco, N. (2020). Structural and physicochemical characterization of chitosan obtained by UAE and its effect on the growth inhibition of Pythium ultimum. Agriculture 2020, Vol. 10, Page 464, 10(10), 464. https://doi.org/10.3390/AGRICULTURE10100464
  • Mohanasrinivasan, V., Mishra, M., Paliwal, J.S., Singh, S.Kr., Selvarajan, E., Suganthi, V., and Subathra Devi, C. (2014). Studies on heavy metal removal efficiency and antibacterial activity of chitosan prepared from shrimp shell waste. 3 Biotech, 4(2), 167–175. https://doi.org/10.1007/s13205-013-0140-6
  • Mohan, K., Ganesan, A.R., Ezhilarasi, P.N., Kondamareddy, K.K., Rajan, D.K., Sathishkumar, P., Rajarajeswaran, J., and Conterno, L. (2022). Green and eco-friendly approaches for the extraction of chitin and chitosan: A review. Carbohydrate Polymers, 287. https://doi.org/10.1016/J.CARBPOL.2022.119349
  • Pacheco, N., Garnica-Gonzalez, M., Gimeno, M., Bárzana, E., Trombotto, S., David, L., and Shirai, K. (2011). Structural characterization of chitin and chitosan obtained by biological and chemical methods. Biomacromolecules, 12(9), 3285–3290. https://doi.org/10.1021/bm200750t
  • Pacheco, N., Naal-Ek, M.G., Ayora-Talavera, T., Shirai, K., Román-Guerrero, A., Fabela-Morón, M.F., and Cuevas-Bernardino, J.C. (2019). Effect of bio-chemical chitosan and gallic acid into rheology and physicochemical properties of ternary edible films. International Journal of Biological Macromolecules, 125. https://doi.org/10.1016/j.ijbiomac.2018.12.060
  • Pech-Cohuo, S.C., Hernandez-Colula, J., Gonzalez-Canche, N.G., Salgado-Transito, I., Uribe-Calderon, J., Cervantes-Uc, J.M., Cuevas-Bernardino, J.C., Ayora-Talavera, T., and Pacheco, N. (2021). Starch from Ramon seed (Brosimum alicastrum) obtained by two extraction methods. MRS Advances 2021 6:38, 6(38), 875–880. https://doi.org/10.1557/S43580-021-00134-W
  • Pech-Cohuo, S.C., Martín-López, H., Uribe-Calderón, J., González-Canché, N.G., Salgado-Tránsito, I., May-Pat, A., Cuevas-Bernardino, J.C., Ayora-Talavera, T., Cervantes-Uc, J. M., and Pacheco, N. (2022). Physicochemical, mechanical, and structural properties of bio-active films based on biological-chemical chitosan, a novel Ramon (Brosimum alicastrum) starch, and quercetin. Polymers 2022, Vol. 14, Page 1346, 14(7), 1346. https://doi.org/10.3390/POLYM14071346
  • Pérez, W.A., Marín, J.A., López, J.N., Burgos, M.A., and Rios, L.A. (2022). Development of a pilot-ecofriendly process for chitosan production from waste shrimp shells. Environmental Processes, 9(3), 1–25. https://doi.org/10.1007/S40710-022-00605-8/TABLES/8
  • Piñeros-Guerrero, N., Piñeros-Castro, Y., and Ortega-Toro, R. (2020). Active biodegradable films based on thermoplastic starch and poly (ε-caprolactone): Technological application of antioxidant extracts from rice husk. Revista Mexicana de Ingeniería Química, 19(3), 1095–1101. https://doi.org/10.24275/rmiq/Poli898
  • Rahman, A., Haque, M.A., Ghosh, S., Shinu, P., Attimarad, M., and Kobayashi, G. (2023). Modified Shrimp-Based Chitosan as an Emerging Adsorbent Removing Heavy Metals (Chromium, Nickel, Arsenic, and Cobalt) from Polluted Water. Sustainability 2023, 15(3), 2431. https://doi.org/10.3390/SU15032431
  • Rodríguez-Guzmán, C.A., Montaño-Leyva, B., Sánchez-Burgos, J.A., Bautista-Rosales, P.U. and Gutiérrez-Martínez, P. (2022). Chitosan and GRAS substances application in the control of Geotrichum candidum isolated from tomato fruits (Lycopersicum esculentum L.) in the state of Nayarit, Mexico: in vitro tests. Revista Mexicana de Ingeniería Química, 21(3), 1-11. https://doi.org/10.24275/rmiq/Bio2790
  • Romero-Bastida, C.A., Velazquez, G., and Bautista-Baños, S. (2020). Effect of the preparation method on the properties of nanocomposites based on chitosan, montmorillonite and essential oils. Revista Mexicana de Ingeniería Química, 19(3), 1243–1253. https://doi.org/10.24275/rmiq/Poly926
  • Rong, L., Ji, X., Shen, M., Chen, X., Qi, X., Li, Y., and Xie, J. (2023). Characterization of gallic acid-Chinese yam starch biodegradable film incorporated with chitosan for potential use in pork preservation. Food Research International, 164, 112331. https://doi.org/10.1016/J.FOODRES.2022.112331
  • Roopa, H., Panghal, A., Kumari, A., Chhikara, N., Sehgal, E., and Rawat, K. (2023). Active Packaging in Food Industry. Novel Technologies in Food Science, 375–404. https://doi.org/10.1002/9781119776376.CH10
  • Roy, S., and Rhim, J.W. (2021). Fabrication of chitosan-based functional nanocomposite films: Effect of quercetin-loaded chitosan nanoparticles. Food Hydrocolloids, 121, 107065. https://doi.org/10.1016/J.FOODHYD.2021.107065
  • Rubini, K., Boanini, E., Menichetti, A., Bonvicini, F., Gentilomi, G.A., Montalti, M., and Bigi, A. (2020). Quercetin loaded gelatin films with modulated release and tailored anti-oxidant, mechanical and swelling properties. Food Hydrocolloids, 109, 106089. https://doi.org/10.1016/J.FOODHYD.2020.106089
  • Saïed, N., and Aïder, M. (2014). Zeta potential and turbidimetry analyzes for the evaluation of chitosan/phytic acid complex formation. Journal of Food Research, 3(2). https://doi.org/10.5539/jfr.v3n2p71
  • Sani, M.A., Dabbagh-Moghaddam, A., Jahed-Khaniki, G., Ehsani, A., Sharifan, A., Khezerlou, A., Tavassoli, M., and Maleki, M. (2023). Biopolymers-based multifunctional nanocomposite active packaging material loaded with zinc oxide nanoparticles, quercetin and natamycin; development and characterization. Journal of Food Measurement and Characterization, 1–17. https://doi.org/10.1007/S11694-022-01791-7/FIGURES/11
  • Sixto-Berrocal, A.M., Vázquez-Aldana, M., Miranda-Castro, S.P., Martínez-Trujillo, M. A., and Cruz-Díaz, M.R. (2023). Chitin/chitosan extraction from shrimp shell waste by a completely biotechnological process. International Journal of Biological Macromolecules, 230, 123204. https://doi.org/10.1016/J.IJBIOMAC.2023.123204
  • Suresh, S., Umesh, M., and Santosh, A.S. (2023). Biological extraction of chitin from fish scale waste using proteolytic bacteria Stenotrophomonas koreensis and its possible application as an active packaging material. Biomass Conversion and Biorefinery, 1, 1–11. https://doi.org/10.1007/S13399-023-03865-Y/FIGURES/9
  • Thakur, R., Pristijono, P., Scarlett, C.J., Bowyer, M., Singh, S.P., and Vuong, Q.v. (2019). Starch-based films: Major factors affecting their properties. International Journal of Biological Macromolecules, 132, 1079–1089. https://doi.org/10.1016/J.IJBIOMAC.2019.03.190
  • Venkatachalam, K., Rakkapao, N., and Lekjing, S. (2023). Physicochemical and antimicrobial characterization of chitosan and native glutinous rice starch-based composite edible films: Influence of different essential oils incorporation. Membranes 2023, Vol. 13, Page 161, 13(2), 161. https://doi.org/10.3390/MEMBRANES13020161
  • Westlake, J.R., Tran, M.W., Jiang, Y., Zhang, X., Burrows, A.D., and Xie, M. (2023). Biodegradable biopolymers for active packaging: demand, development and directions. Sustainable Food Technology, 1 50-72. https://doi.org/10.1039/d2fb00004k
  • Wiggers, H.J., Chevallier, P., Copes, F., Simch, F.H., da Silva Veloso, F., Genevro, G.M., and Mantovani, D. (2022). Quercetin-crosslinked chitosan films for controlled release of antimicrobial drugs. Frontiers in Bioengineering and Biotechnology, 10, 246. https://doi.org/10.3389/FBIOE.2022.814162/BIBTEX
  • Yadav, S., Mehrotra, G.K., Bhartiya, P., Singh, A., and Dutta, P.K. (2020). Preparation, physicochemical and biological evaluation of quercetin based chitosan-gelatin film for food packaging. Carbohydrate Polymers, 227(September 2019), 115348. https://doi.org/10.1016/j.carbpol.2019.115348
  • Yarnpakdee, S., Kaewprachu, P., Jaisan, C., Senphan, T., Nagarajan, M., and Wangtueai, S. (2022). Extraction and Physico–chemical characterization of chitosan from mantis shrimp (Oratosquilla nepa) shell and the development of bio-composite film with agarose. Polymers, 14(19), 3983. https://doi.org/10.3390/polym14193983
Zapata-Luna, R.L., Ayora-Talavera, T., Pacheco, N., García-Márquez, E., Espinosa-Andrews, H., Ku-González, Á., Ruiz-Ruiz, J., and Cuevas-Bernardino, J.C. (2021). Physicochemical, morpho-structural and rheological characterization of starches from three Phaseolus spp. landraces grown in Chiapas. Journal of Food Measurement and Characterization, 15(2), 1410–1421. https://doi.org/10.1007/S11694-020-00739-Z