Revista Mexicana de Ingeniería Química, Vol. 22, No. 2 (2023), Alim2316


Opuntia ficus-indica mucilage reduces wheat starch in vitro digestibility

I. Reyes, M. E. Rodríguez-Huezo, S. Garcia-Diaz

https://doi.org/10.24275/rmiq/Alim2316


Abstract

 

Nopal (Opuntia ficus-indica) is traditionally used in Mexico for the treatment of diabetes mellitus. Several clinical studies have reported an anti-hyperglycemic effect from the plant, but the underlying mechanisms are still controversial. In this study, the potential beneficial effects of using nopal juice for controlling glucose release during the hydrolysis of starch molecules, and the possible mechanisms of action involved, were explored using in vitro testing. To this end, wheat starch dispersions (3 g/100 g water) were gelatinized, subjected to either hydrochloric acidic (pH 2.0) or α-amylase (pH 6.9) hydrolysis, and glucose production was monitored. Nopal mucilage (NM) extracted from nopal cladodes was added to starch dispersions which were completely gelatinized. NM reduced the acidic hydrolysis of starch by about 50%, although NM also contributed to glucose production. Some insights pointed out to a mechanism involving the formation of electrostatic complexes between starch and nopal polysaccharides, which are resistant to acidic hydrolysis. On the other hand, nopal hydrolysis also reduced the amylolytic starch hydrolysis by 40%, possibly due to the formation of enzyme-polyphenol complexes which hindered the action of the enzymes upon the starch molecules, plus the fact that the α-amylase was unable to hydrolyze the nopal mucilage. Thus, the formation of different types of complexes produced mechanical hurdles that hindered starch hydrolysis and glucose production.

Keywords: Opuntia ficus-indica; in vitro digestion; hydrolysis kinetics; amylolytic enzymes.

 

References

  • Apar, D. K. and Özbek, B. (2005). α-Amylase inactivation during rice starch hydrolysis. Process Biochemistry 40, 1367-1379. https://doi.org/10.1016/j.procbio.2004.06.006
  • Andrade-Cetto, A. and Wiedenfeld, H. (2011). Anti-hyperglycemic effect of Opuntia streptacantha Lem. Journal of Ethnopharmacology 133, 940-943. https://doi.org/10.1016/j.jep.2010.11.022
  • Bai, Y., Wu, P., Wang, K., Li, C., Li, E. and Gilbert, R. G. (2017). Effects of pectin on molecular structural changes in starch during digestion. Food Hydrocolloids 69, 10-18. https://doi.org/10.1016/j.foodhyd.2017.01.021
  • Becerra-Jiménez, J. and Andrade-Cetto, A. (2012). Effect of Opuntia streptacantha Lem. on alpha-glucosidase activity. Journal of Ethnopharmacology 139, 493-496. https://doi.org/10.1016/j.jep.2011.11.039
  • Benítez, V., Mollá, E., Martín-Cabrejas, M. A., Aguilera, Y. and Esteban, R. M. (2017). Physicochemical properties and in vitro antidiabetic potential of fibre concentrates from onion by-products. Journal of Functional Foods 36, 34-42. https://doi.org/10.1016/j.jff.2017.06.045
  • Campos-Montiel, R. G., Vicente-Flores, M., Chanona-Pérez, J. J., Espino-Manzano, S. O., & de los Montero-Sierra, M. G. (2021). Physicochemical, rheological and sensory characterization of a gluten-free English bread added with Oxalis tuberosa flour. Revista Mexicana de Ingeniería Química 20, Alim 2572. https://doi.org/10.24275/rmiq/Alim2572
  • Colosimo, R., Warren, F. J., Edwards, C. H., Finnigan, T. J. and Wilde, P. J. (2020). The interaction of α-amylase with mycoprotein: Diffusion through the fungal cell wall, enzyme entrapment, and potential physiological implications. Food Hydrocolloids 108, 106018. https://doi.org/10.1016/j.foodhyd.2020.106018
  • Cortés-Camargo, S., Cruz-Olivares, J., Barragán-Huerta, B. E., Dublán-García, O., Román-Guerrero, A. and Pérez-Alonso, C. (2017). Microencapsulation by spray drying of lemon essential oil: Evaluation of mixtures of mesquite gum–nopal mucilage as new wall materials. Journal of Microencapsulation 34, 395-407. https://doi.org/10.1080/02652048.2017.1338772
  • Debet, M. R. and Gidley, M. J. (2007). Why do gelatinized starch granules not dissolve completely? Roles for amylose, protein, and lipid in granule “ghost” integrity. Journal of Agricultural and Food Chemistry 55, 4752-4760. https://doi.org/10.1021/jf070004o
  • Dominguez-Martinez, B. M., Martínez-Flores, H. E., Berrios, J. D. J., Otoni, C. G., Wood, D. F. and Velazquez, G. (2017). Physical characterization of biodegradable films based on chitosan, polyvinyl alcohol and opuntia mucilage. Journal of Polymers and the Environment 25, 683-691. https://doi.org/10.1007/s10924-016-0851
  • Espino‐Díaz, M., De Jesús Ornelas‐Paz, J., Martínez‐Téllez, M. A., Santillán, C., Barbosa‐Cánovas, G. V., Zamudio‐Flores, P. B. and Olivas, G. I. (2010). Development and characterization of edible films based on mucilage of Opuntia ficus‐indica (l.). Journal of Food Science 75(6), E347-E352. https://doi.org/10.1111/j.1750-3841.2010.01661.x
  • Espinosa-Andrews, H., Báez-González, J. G., Cruz-Sosa, F. and Vernon-Carter, E. J. (2007). Gum arabic−chitosan complex coacervation. Biomacromolecules 8, 1313-1318. https://doi.org/10.1021/bm0611634
  • Espinosa-Solares, T., & Domínguez-Puerto, R. (2023). Influence of power density and geometry of young cactus cladodes (Opuntia ficus-indica (L.) Mill.) on intermittent microwave drying kinetics. Revista Mexicana de Ingeniería Química 22, Alim2965. https://doi.org/10.24275/rmiq/Alim2965
  • Felkai-Haddache, L., Remini, H., Dulong, V., Mamou-Belhabib, K., Picton, L., Madani, K. and Rihouey, C. (2016). Conventional and microwave-assisted extraction of mucilage from Opuntia ficus-indica Cladodes: Physico-chemical and rheological properties. Food and Bioprocess Technology 9, 481-492.
  • García-de la Rosa, K., Lobato-Calleros, C., Hernández-Rodríguez, L., & Aguirre-Mandujano, E. (2023).  Rheological and structural properties of complex coacervates of Amaranthus hypochondriacus protein-citrus pectin. Revista Mexicana de Ingeniería Química 22, Alim3003.
  • Haruenkit, R., Poovarodom, S., Vearasilp, S., Namiesnik, J., Sliwka-Kaszynska, M., Park, Y. S., Geo, B-G., Cho, J-Y., Jang, H. G. and Gorinstein, S. (2010). Comparison of bioactive compounds, antioxidant and antiproliferative activities of Mon Thong durian during ripening. Food Chemistry 118, 540-547. https://doi.org/10.1016/j.foodchem.2009.05.029
  • He, H., Zhang, Y., Hong, Y. and Gu, Z. (2015). Effects of hydrocolloids on corn starch retrogradation. Starch‐Stärke 67, 348-354. https://doi.org/10.1002/star.201400213
  • Kawamura-Konishi, Y., Watanabe, N., Saito, M., Nakajima, N., Sakaki, T., Katayama, T. and Enomoto, T. (2012). Isolation of a new phlorotannin, a potent inhibitor of carbohydrate-hydrolyzing enzymes, from the brown alga Sargassum patens. Journal of Agricultural and Food Chemistry 60, 5565-5570. https://doi.org/10.1021/jf300165j
  • León-Martínez, F. M., Mendez-Lagunas, L. L. and Rodriguez-Ramirez, J. (2010). Spray drying of nopal mucilage (Opuntia ficus-indica): Effects on powder properties and characterization. Carbohydrate Polymers 81, 864-870. https://doi.org/10.1016/j.carbpol.2010.03.061
  • Lo Piparo, E., Scheib, H., Frei, N., Williamson, G., Grigorov, M. and Chou, C. J. (2008). Flavonoids for controlling starch digestion: structural requirements for inhibiting human α-amylase. Journal of Medicinal Chemistry 51, 3555-3561. https://doi.org/10.1021/jm800115x
  • Malainine, M. E., Dufresne, A., Dupeyre, D., Mahrouz, M., Vuong, R. and Vignon, M. R. (2003). Structure and morphology of cladodes and spines of Opuntia ficus-indica. Cellulose extraction and characterisation. Carbohydrate Polymers 51, 77-83. https://doi.org/10.1016/S0144-8617(02)00157-1
  • Marsh, R. A. and Waight, S. G. (1982). The effect of pH on the zeta potential of wheat and potato starch. Starch‐Stärke 34, 149-152. https://doi.org/10.1002/star.19820340502
  • Medina‐Torres, L., Vernon‐Carter, E. J., Gallegos‐Infante, J. A., Rocha‐Guzman, N. E., Herrera‐Valencia, E. E., Calderas, F. and Jiménez‐Alvarado, R. (2011). Study of the antioxidant properties of extracts obtained from nopal cactus (Opuntia ficus‐indica) cladodes after convective drying. Journal of the Science of Food and Agriculture 91, 1001-1005. https://doi.org/10.1002/jsfa.4271
  • Montes, L. T., Garcia, M. R., Gazzola, J. and Gomez, S. (2005). Analysis of stucco floors from the Citadel of the archaeological Zone of Teotihuacan, Mexico. In Materials Research Society Symposium Proceedings (Vol. 852, September, p. 353). https://doi.org/10.1557/PROC-852-OO6.1
  • Moriana, R., Zhang, Y., Mischnick, P., Li, J. and Ek, M. (2014). Thermal degradation behavior and kinetic analysis of spruce glucomannan and its methylated derivatives. Carbohydrate Polymers 106, 60-70. https://doi.org/10.1016/j.carbpol.2014.01.086
  • Nuñez-López, M. A., Paredes-López, O. and Reynoso-Camacho, R. (2013). Functional and hypoglycemic properties of nopal cladodes (O. ficus-indica) at different maturity stages using in vitro and in vivo tests. Journal of Agricultural and Food Chemistry 61, 10981-10986. https://doi.org/10.1021/jf403834x
  • Ramos-Sanchez, M. C., Rey, F. J., Rodriguez, M. L., Martin-Gil, F. J. and Martin-Gil, J. (1988). DTG and DTA studies on typical sugars. Thermochimica Acta 134, 55-60. https://doi.org/10.1016/0040-6031(88)85216-X
  • Ou, S., Kwok, K. C., Li, Y. and Fu, L. (2001). In vitro study of possible role of dietary fiber in lowering postprandial serum glucose. Journal of Agricultural and Food Chemistry 49, 1026-1029. https://doi.org/10.1021/jf000574n
  • Rodríguez‐González, S., Martínez‐Flores, H. E., Chávez‐Moreno, C. K., Macías‐Rodríguez, L. I., Zavala‐Mendoza, E., Garnica‐Romo, M. G. and Chacón‐García, L. (2014). Extraction and characterization of mucilage from wild species of Opuntia. Journal of Food Process Engineering 37, 285-292. https://doi.org/10.1111/jfpe.12084
  • Salgin, S., Salgin, U. Ğ. U. R. and Bahadir, S. (2012). Zeta potentials and isoelectric points of biomolecules: the effects of ion types and ionic strengths. International Journal of Electrochemistry Science 7, 12404-12414.
  • Sasaki, T. and Kohyama, K. (2012). Influence of non-starch polysaccharides on the in vitro digestibility and viscosity of starch suspensions. Food Chemistry 133, 1420-1426. https://doi.org/10.1016/j.foodchem.2012.02.029
  • Shane-McWhorter, L. (2001). Biological complementary therapies: a focus on botanical products in diabetes. Diabetes Spectrum 14(4), 199-208. https://doi.org/10.2337/diaspect.14.4.199
  • Shane-McWhorter, L. (2005). Botanical dietary supplements and the treatment of diabetes: what is the evidence? Current Diabetes Reports 5(5), 391-398. https://doi.org/10.1007/s11892-005-0099-8
  • Sun, L., Chen, W., Meng, Y., Yang, X., Yuan, L. and Guo, Y. (2016). Interactions between polyphenols in thinned young apples and porcine pancreatic α-amylase: Inhibition, detailed kinetics and fluorescence quenching. Food Chemistry 208, 51-60. https://doi.org/10.1016/j.foodchem.2016.03.093
  • Tejada-Tovar, C., Bonilla-Mancilla, H., Villabona-Ortiz, A., Ortega-Toro, R. Licares-Eguavil, J. (2021). Effect of the adsorbent dose and initial contaminant concentration on the removal of Pb (II) in a solution using Opuntia ficus Indica shell. Revista Mexicana de Ingeniería Química 20, 555-568. https://doi.org/10.24275/rmiq/IA2134
  • Torres-Acosta, A. A. (2007). Opuntia-Ficus-Indica (Nopal) mucilage as a steel corrosion inhibitor in alkaline media. Journal of Applied Electrochemistry 37, 835-841. https://doi.org/10.1007/s10800-007-9319-z
  • Torres-Ponce, R. L., Morales-Corral, D., Ballinas-Casarrubias, M. D. L. and Nevárez-Moorillón, G. V. (2015). El nopal: planta del semidesierto con aplicaciones en farmacia, alimentos y nutrición animal. Revista Mexicana de Ciencias Agrícolas 6, 1129-1142.
  • Valencia-Sandoval, K., Brambila-Paz, J. D. J. and Mora-Flores, J. S. (2010). Evaluación del nopal verdura como alimento funcional mediante opciones reales. Agrociencia 44, 955-963.
  • Van Soest, J. J., Tournois, H., de Wit, D. and Vliegenthart, J. F. (1995). Short-range structure in (partially) crystalline potato starch determined with attenuated total reflectance Fourier-transform IR spectroscopy. Carbohydrate Research 279, 201-214. https://doi.org/10.1016/0008-6215(95)00270-7
  • Ventolà, L., Vendrell, M., Giraldez, P. and Merino, L. (2011). Traditional organic additives improve lime mortars: New old materials for restoration and building natural stone fabrics. Construction and Building Materials 25, 3313-3318. https://doi.org/10.1016/j.conbuildmat.2011.03.020
  • Wu, S., Lai, M., Luo, J., Pan, J., Zhang, L. M. and Yang, L. (2017). Interactions between α-amylase and an acidic branched polysaccharide from green tea. International Journal of Biological Macromolecules 94, 669-678. https://doi.org/10.1016/j.ijbiomac.2016.09.036