Revista Mexicana de Ingeniería Química, Vol. 22, No. 2 (2023), Alim2993


Pineapple powder quality: Effect of the feedstock solution composition, homogenization and spray drying process

L.M. Cardona, M. Cortés-Rodríguez, F.J. Castellanos-Galeano

https://doi.org/10.24275/rmiq/Alim2993


Abstract

 

The objective of this research was to evaluate concentration of compounds in the feedstock solution and the conditions of the spray drying process and process conditions for high-pressure homogenization and spray drying on powder pineapple (pulp, core, and peel) quality. The independent variables were considered: maltodextrin (8.0-12.0 %), homogenization pressure of the suspension fed to the dryer (30-50 MPa), rotary atomizer speed (18000-20000 rpm), inlet air temperature (125-155°C), and outlet air temperature (80-90°C). The experimental optimization of multiple responses defined the independent variables as homogenization pressure (44.4 MPa), maltodextrin (10.2 %), inlet air temperature (134.9°C), outlet air temperature (80°C), and rotary atomizer speed (18296 rpm). The dependent variables were: aw (0.215 ± 0.006), solubility (81.9 ± 1.3%), hygroscopicity (12.6 ± 0.9 %), wettability (312.41 ± 21.9 s), angle repose (32.18 ± 2.7°), particle size as D[4,3](22.6 ± 1.5 μm), total polyphenols (301.98 ± 13.8 mg GAE/100gdb), total flavonoids (199.85 ± 11.3 mg QE/100gdb), ABTS (179.14 ± 10.3 mg TE/100gdb), DPPH (308.49 ± 8.1 mg TE/100gdb), and Vitamin C (33.2 ± 0.3 mg AA/100gdb).

Keywords: Ananas comosus; antioxidant activity; fruit powder; physicochemical properties, Response surface methodology.

 

References

  • Ancos, B., Sánchez-Moreno, C., & González-Aguilar, G. A. (2016). Pineapple composition and nutrition. Handbook of Pineapple Technology: Postharvest Science, Processing and Nutrition, 221-239. https://doi.org/10.1002/9781118967355.ch12.

  • Araujo, H. C. S., Jesus, M. S., Leite Neta, M. T. S., Gualberto, N. C., Matos, C. M. S., Rajan, M., Rajkumar, G., Nogueira, J. P., & Narain, N. (2020). Effect of maltodextrin and gum arabic on antioxidant activity and phytochemical profiles of spray-dried powders of sapota (Manilkara zapota) fruit juice. Drying Technology, 1-13. https://doi.org/10.1080/07373937.2020.1839487

  • Azizan, A., Lee, A. X., Hamid, N. A. A., Maulidiani, M., Mediani, A., Ghafar, S. Z. A., Zolkeflee, N. K. Z., & Abas, F. (2020). Potentially bioactive metabolites from pineapple waste extracts and their antioxidant and $\alpha$-glucosidase inhibitory activities by 1H NMR. {\it Foods 9}(2). \url{https://doi.org/10.3390/foods9020173}

  • Bakar, J., Ee, S. C., Muhammad, K., Hashim, D. M., & Adzahan, N. (2013). Spray-drying optimization for red pitaya peel ({\it Hylocereus polyrhizus}). {\it Food and Bioprocess Technology 6}(5), 1332-1342. \url{https://doi.org/10.1007/s11947-012-0842-5}

  • Braga, V., Guidi, L. R., de Santana, R. C., & Zotarelli, M. F. (2020). Production and characterization of pineapple-mint juice by spray drying. {\it Powder Technology 375}, 409-419. \url{https://doi.org/10.1016/j.powtec.2020.08.012}

  • Caliskan, G., & Dirim, S. N. (2016). The effect of different drying processes and the amounts of maltodextrin addition on the powder properties of sumac extract powders. {\it Powder Technology 287}, 308-314. \url{https://doi.org/10.1016/j.powtec.2015.10.019}

  • Cardona, L. M., Cortés-Rodríguez, M., Galeano, F. J. C., & Arango, J. C. (2022). Physicochemical stability of pineapple suspensions: the integrated effects of enzymatic processes and homogenization by shear. {\it Journal of Food Science and Technology 59}, 1610-1618). \url{https://doi.org/10.1007/s13197-021-05172-8}

  • Carneiro Maranhão Ribeiro, C. M., dos Santos Alencar Magliano, L. C., de Costa, M. M. A., Bezerra, T. K. A., da Silva, F. L. H., & Maciel, M. I. S. (2019). Optimization of the spray drying process conditions for acerola and seriguela juice mix. {\it Food Science and Technology 39}, 48-55. \url{https://doi.org/10.1590/fst.36217}

  • Chaul, L. T., Conceição, E. C., Bara, M. T. F., Paula, J. R., & Couto, R. O. (2017). Engineering spray-dried rosemary extracts with improved physicomechanical properties: A design of experiments issue. {\it Brazilian Journal of Pharmacognosy 27}(2), 236-244. \url{https://doi.org/10.1016/j.bjp.2016.10.006}

  • Chegini, G. R., & Ghobadian, B. (2005). Effect of spray-drying conditions on physical properties of orange juice powder. {\it Drying Technology 23}(3), 657-668. \url{https://doi.org/10.1081/DRT-200054161}

  • Cortés, M. R., Hernández, G. S., & Estrada, E. M. M. (2017). Optimización del proceso de secado por aspersión para la obtención uchuva en polvo: Un alimento funcional innovador y promisorio. {\it Vitae 24}(1), 59-67. \url{https://doi.org/10.17533/udea.vitae.v24n1a07}

  • Da Silva, A. G., Da Costa, M. T., Da Silva, V. M., Sartoratto, A., Rodrigues, R. A. F., & Hubinger, M. D. (2016). Physical properties and morphology of spray dried microparticles containing anthocyanins of jussara ({\it Euterpe edulis Martius}) extract. {\it Powder Technology 294}, 421-428. \url{https://doi.org/10.1016/j.powtec.2016.03.007}

  • Daza, L. D., Fujita, A., Fávaro-Trindade, C. S., Rodrigues-Ract, J. N., Granato, D., & Genovese, M. I. (2016). Effect of spray drying conditions on the physical properties of Cagaita ({\it Eugenia dysenterica} DC.) fruit extracts. {\it Food and Bioproducts Processing 97}, 20-29. \url{https://doi.org/10.1016/j.fbp.2015.10.001}

  • Estevinho, B. N., Carlan, I., Blaga, A., & Rocha, F. (2016). Soluble vitamins (vitamin B12 and vitamin C) microencapsulated with different biopolymers by a spray drying process. {\it Powder Technology 289}, 71-78. \url{https://doi.org/10.1016/j.powtec.2015.11.019}

  • FAOSTAT. (2019). {\it Pineapple Production Quantity}. Food and Agriculture Organization of the United Nations. \url{http://www.fao.org/faostat/en/#data/QC}

  • Fazaeli, M., Emam-Djomeh, Z., Kalbasi Ashtari, A., & Omid, M. (2012). Effect of spray drying conditions and feed composition on the physical properties of black mulberry juice powder. {\it Food and Bioproducts Processing 90}(4), 667-675. \url{https://doi.org/10.1016/j.fbp.2012.04.006}

  • Ferreira, S., Araujo, T., Souza, N., Rodrigues, L., Lisboa, H. M., Pasquali, M., Trindade, G., & Rocha, A. P. (2019). Physicochemical, morphological and antioxidant properties of spray-dried mango kernel starch. {\it Journal of Agriculture and Food Research 1}, 100012. \url{https://doi.org/10.1016/j.jafr.2019.100012}

  • Gallo, L., Llabot, J. M., Allemandi, D., Bucalá, V., & Piña, J. (2011). Influence of spray-drying operating conditions on Rhamnus purshiana ({\it Cascara sagrada}) extract powder physical properties. {\it Powder Technology 208}, 205-214. \url{https://doi.org/10.1016/j.powtec.2010.12.021}

  • Gallón Bedoya, M., Cortés Rodríguez, M., & Gil, J. H. (2020). Physicochemical stability of colloidal systems using the cape gooseberry, strawberry, and blackberry for spray drying. {\it Journal of Food Processing and Preservation 44}(9), 1-10. \url{https://doi.org/10.1111/jfpp.14705}

  • Geldart, D., Abdullah, E. C., Hassanpour, A., Nwoke, L. C., & Wouters, I. (2006). Characterization of powder flowability using measurement of angle of repose. {\it China Particuology 4}(3-4), 104-107. \url{https://doi.org/10.1016/s1672-2515(07)60247-4}

  • Goula, A. M. (2017). Implications of non-equilibrium state glass transitions in spray-dried sugar-rich foods. In {\it Non-Equilibrium States and Glass Transitions in Foods: Processing Effects and Product-Specific Implications}. Elsevier Ltd. \url{https://doi.org/10.1016/B978-0-08-100309-1.00014-6}

  • Islam, M. Z., Kitamura, Y., Yamano, Y., & Kitamura, M. (2016). Effect of vacuum spray drying on the physicochemical properties, water sorption and glass transition phenomenon of orange juice powder. {\it Journal of Food Engineering 169}, 131-140. \url{https://doi.org/10.1016/j.jfoodeng.2015.08.024}

  • Janiszewska-Turak, E., & Witrowa-Rajchert, D. (2020). The influence of carrot pretreatment, type of carrier and disc speed on the physical and chemical properties of spray-dried carrot juice microcapsules. {\it Drying Technology}, 1-11. \url{https://doi.org/10.1080/07373937.2019.1705850}

  • Labuschagne, P. (2018). Impact of wall material physicochemical characteristics on the stability of encapsulated phytochemicals: A review. {\it Food Research International 107}, 227-247. \url{https://doi.org/10.1016/j.foodres.2018.02.026}

  • Lacerda, E. C. Q., Calado, V. M. D. A., Monteiro, M., Finotelli, P. V., Torres, A. G., & Perrone, D. (2016). Starch, inulin and maltodextrin as encapsulating agents affect the quality and stability of jussara pulp microparticles. {\it Carbohydrate Polymers 151}, 500-510. \url{https://doi.org/10.1016/j.carbpol.2016.05.093}

  • Largo, E., Cortes, M., & Ciro, H. J. (2015). Influence of maltodextrin and spray drying process conditions on sugarcane juice powder quality. {\it Revista Facultad Nacional de Agronomía Medellín 68}(1), 7509-7520.

  • Lobo, M. G., & Yahia, E. (2016). Biology and postharvest physiology of pineapple. {\it Handbook of Pineapple Technology: Postharvest Science, Processing and Nutrition}, 39-61. \url{https://doi.org/10.1002/9781118967355.ch3}

  • Lourenço, S. C., Fraqueza, M. J., Fernandes, M. H., Moldão-Martins, M., & Alves, V. D. (2020). Application of edible alginate films with pineapple peel active compounds on beef meat preservation. {\it Antioxidants 9}(8), 1-15. \url{https://doi.org/10.3390/antiox9080667}

  • Lourenço, S. C., Moldão-Martins, M., & Alves, V. D. (2020). Microencapsulation of pineapple peel extract by spray drying using maltodextrin, inulin, and Arabic gum as wall matrices. {\it Foods 9}(6), 1-17. \url{https://doi.org/10.3390/FOODS9060718}

  • Lucas, J. C., Giraldo, A., & Cortes, M. (2018). Effect of the spray drying process on the quality of coconut powder fortified with calcium and vitamins C, D3 and E. {\it Advance Journal of Food Science and Technology 16}, 102-124. \url{https://doi.org/10.19026/ajfst.16.5943}

  • Mahdi, S., Ghalegi, M., & Dehnad, D. (2017). Influence of spray drying on water solubility index, apparent density, and anthocyanin content of pomegranate juice powder. {\it Powder Technology 311}, 59-65. \url{https://doi.org/10.1016/j.powtec.2017.01.070}

  • Martínez-Navarrete, N., Grau, A., Chiralt, A., & Maupoey, F. (1998). {\it Termodinámica y Cinética de Sistemas: Alimento Entorno} (E. U. P. de València., Ed.).

  • Marulanda, A., Ruiz-Ruiz, M., & Cortes-Rodríguez, M. (2018). Influence of spray drying process on the quality of avocado powder: A functional food with great industrial potential. {\it Vitae 25}(1), 37-48. \url{https://doi.org/10.17533/udea.vitae.v25n1a05}

  • Mendoza-Corvis, F. A., Arteaga M., M., & Pérez S., O. (2016). Comportamiento de la vitamina c en un producto a base de lactosuero y pulpa de mango variedad magdalena river ({\it Mangífera indica l}.) durante el secado por aspersión. {\it Revista Chilena de Nutricion 43}(2), 159-166. \url{https://doi.org/10.4067/S0717-75182016000200008}

  • Mestry, A. P., Mujumdar, A. S., & Thorat, B. N. (2011). Optimization of spray drying of an innovative functional food: Fermented mixed juice of carrot and watermelon. {\it Drying Technology 29}(10), 1121-1131. \url{https://doi.org/10.1080/07373937.2011.566968}

  • Mishra, P., Mishra, S., & Mahanta, C. L. (2014). Effect of maltodextrin concentration and inlet temperature during spray drying on physicochemical and antioxidant properties of amla ({\it Emblica officinalis}) juice powder. {\it Food and Bioproducts Processing 92}(3), 252-258. \url{https://doi.org/10.1016/j.fbp.2013.08.003}

  • Moghaddam, A. D., Pero, M., & Askari, G. R. (2017). Optimizing spray drying conditions of sour cherry juice based on physicochemical properties, using response surface methodology (RSM). {\it Journal of Food Science and Technology 54}(1), 174-184. \url{https://doi.org/10.1007/s13197-016-2449-8}

  • Oberoi, D. P. S., & Sogi, D. S. (2015). Effect of drying methods and maltodextrin concentration on pigment content of watermelon juice powder. {\it Journal of Food Engineering 165}, 172-178. \url{https://doi.org/10.1016/j.jfoodeng.2015.06.024}

  • Pereira, C. G. (2019). Phase transition in foods. In: {\it Thermodynamics of Phase Equilibria in Food Engineering} (Issue 1). Elsevier Inc. \url{https://doi.org/10.1016/B978-0-12-811556-5.00010-7}

  • Roda, A., & Lambri, M. (2019). Food uses of pineapple waste and by-products: a review. {\it International Journal of Food Science and Technology 54}(4), 1009-1017. \url{https://doi.org/10.1111/ijfs.14128}

  • Cortés-Rodríguez, M., Gil, J.H., Ortega-Toro, R., (2022). Influence of the feed composition and the spray drying process on the quality of a powdered mixture of blackberry ({\it Rubus glaucus Benth}). {\it Revista Mexicana de Ingeniería Química 21}, 97-104.

  • Roos, Y., & Drusch, S. (2016). {\it Phase Transition in Food} (A. Press, Ed.; Second ed.). Elsevier.

  • Sablania, V., & Bosco, S. J. D. (2018). Optimization of spray drying parameters for Murraya koenigii (Linn) leaves extract using response surface methodology. {\it Powder Technology 335}, 35-41. \url{https://doi.org/10.1016/j.powtec.2018.05.009}

  • Santhalakshmy, S., John, S., Bosco, D., Francis, S., & Sabeena, M. (2015). Effect of inlet temperature on physicochemical properties of spray-dried jamun fruit juice powder. {\it Powder Technology 274}, 37-43. https://doi.org/10.1016/j.powtec.2015.01.016

  • Selvamuthukumaran, M., & Khanum, F. (2014). Optimization of spray drying process for developing seabuckthorn fruit juice powder using response surface methodology. {\it Journal of Food Science and Technology 51}(12), 3731-373. \url{https://doi.org/10.1007/s13197-012-0901-y}

  • Sepúlveda, L., Romaní, A., Aguilar, C. N., & Teixeira, J. (2018). Valorization of pineapple waste for the extraction of bioactive compounds and glycosides using autohydrolysis. {\it Innovative Food Science and Emerging Technologies 47}, 38-45. \url{https://doi.org/10.1016/j.ifset.2018.01.012}

  • Sharma, P., Ramchiary, M., Samyor, D., & Das, A. B. (2016). Study on the phytochemical properties of pineapple fruit leather processed by extrusion cooking. {\it LWT - Food Science and Technology 72}, 534-543. \url{https://doi.org/10.1016/j.lwt.2016.05.001}

  • Shishir, M. R. I., Taip, F. S., Aziz, N. A., & Talib, R. A. (2014). Physical properties of spray-dried pink guava ({\it Psidium Guajava}) powder. {\it Agriculture and Agricultural Science Procedia 2}, 74-81. \url{https://doi.org/10.1016/j.aaspro.2014.11.011}

  • Souza, A. L. R., Hidalgo-Chávez, D. W., Pontes, S. M., Gomes, F. S., Cabral, L. M. C., & Tonon, R. V. (2018). Microencapsulation by spray drying of a lycopene-rich tomato concentrate: Characterization and stability. {\it LWT - Food Science and Technology, 91}, 286-292. \url{https://doi.org/10.1016/j.lwt.2018.01.053}

  • Tontul, I., & Topuz, A. (2017). Spray-drying of fruit and vegetable juices: Effect of drying conditions on the product yield and physical properties. {\it Trends in Food Science and Technology 63}, 91-102. \url{https://doi.org/10.1016/j.tifs.2017.03.009}

  • Vidović, S. S., Vladić, J. Z., Vaštag, Ž. G., Zeković, Z. P., & Popović, L. M. (2014). Maltodextrin as a carrier of health benefit compounds in {\it Satureja montana} dry powder extract obtained by spray drying technique. {\it Powder Technology 258}, 209-215. \url{https://doi.org/10.1016/j.powtec.2014.03.038}

  • Zhang, J., Zhang, C., Chen, X., & Quek, S. Y. (2020). Effect of spray drying on phenolic compounds of cranberry juice and their stability during storage. {\it Journal of Food Engineering 269}, 109744. \url{https://doi.org/10.1016/j.jfoodeng.2019.109744}