Revista Mexicana de Ingeniería Química, Vol. 22, No. 2 (2023), Bio239


The importance of substrate formulation on the hydrolysis process in anaerobic digestion: a numerical and experimental study

A. Albalate-Ramírez, M.M. Alcalá-Rodríguez, L.R. Miramontes-Martínez, A. Estrada-Baltazar, U. Galván-Arzola, B.N. López-Hernández, J.R. Morones-Ramírez, P. Rivas-García

https://doi.org/10.24275/rmiq/Bio239


Abstract

 

Substrate formulation has been widely studied to ensure optimum methane production in anaerobic digestion. This work demonstrated a synergistic degradation in the hydrolysis of carbohydrates, proteins, and lipids that enhances CH4 yields through biochemical methane potential (BMP) tests and a co-digestion index (CI), following a D-Optimal experimental design. Additionally, this work proposes and validates a modification to the hydrolysis step in the Anaerobic Digestion Model No.1 (ADM1), capable of representing such synergistic degradation by incorporating the CI as a dynamic variable into the mathematical structure of the model. High CI values were observed at balanced carbohydrate-protein-lipid and protein-lipid ratios, obtaining values of 3.23 and 2.85, respectively. In contrast, low CI values were obtained at higher lipid-carbohydrate ratios (1.21), demonstrating that adding proteins to the substrate mixture promotes synergy. Incorporating the CI as a dynamic variable in the hydrolysis stage of the ADM1 increases its predictive capacity, reducing the root mean square error value by up to 55.7% when modeling the BMP tests compared to the original ADM1 structure. When subjected to mixtures of real substrates, the proposed model precisely adjusts the experimental data. These results prove the validity of the proposed modification to the ADM1 and its functionality with real substrate mixtures. This work allows the numerical representation of the synergistic effects in the degradation of a substrate and the correct generation of feed formulations that increase CH4 yields.

Keywords: Anaerobic digestion; ADM1; hydrolysis; co-digestion index; carbohydrates, proteins, and lipids degradation; synergistic effects.

 

References

  • Albalate-Ramírez, A., Alcalá-Rodríguez, M. M., Miramontes-Martínez, L. R., Padilla-Rivera, A., Estrada-Baltazar, A., López-Hernández, B. N., & Rivas-García, P. (2022). Energy Production from Cattle Manure within a Life Cycle Assessment Framework: Statistical Optimization of Co-Digestion, Pretreatment, and Thermal Conditions. Sustainability (Switzerland), 14(24). https://doi.org/10.3390/su142416945
  • Astals, S., Batstone, D. J., Mata-Alvarez, J., & Jensen, P. D. (2014). Identification of synergistic impacts during anaerobic co-digestion of organic wastes. Bioresource Technology, 169, 421–427. https://doi.org/10.1016/j.biortech.2014.07.024
  • Batstone, D., Keller, J., Angelidaki, I., Kalyuzhnyi, S. ., Pavlostathis, S. ., Rozzi, A., Sanders, W. T. ., Siegrist, H., & Vavilin, V. . (2002). The IWA Anaerobic Digestion Model No 1(ADM1). Water Science and Technology, 45(1), 65–73. https://doi.org/10.2166/wst.2008.678
  • Charnier, C., Latrille, E., Roger, J.-M., Miroux, J., & Steyer, J.-P. (2018). Near-Infrared Spectrum Analysis to Determine Relationships between Biochemical Composition and Anaerobic Digestion Performances. Chemical Engineering & Technology, 41(4), 727–738. https://doi.org/10.1002/ceat.201700581
  • Cornell, J. A. (2011). A primer on experiments with mixtures. In Wiley series in probability and statistics. https://doi.org/10.1017/CBO9781107415324.004
  • Cuetos, M. J., Gómez, X., Otero, M., & Morán, A. (2010). Anaerobic digestion and co-digestion of slaughterhouse waste (SHW): Influence of heat and pressure pre-treatment in biogas yield. Waste Management, 30(10), 1780–1789. https://doi.org/10.1016/j.wasman.2010.01.034
  • Davidsson, Å., Lövstedt, C., la Cour Jansen, J., Gruvberger, C., & Aspegren, H. (2008). Co-digestion of grease trap sludge and sewage sludge. Waste Management, 28(6), 986–992. https://doi.org/10.1016/j.wasman.2007.03.024
  • Dominguillo-Ramírez, D., Aburto, J., Leon-Santiesteban, H. H., & Martinez-Hernandez, E. (2023). Neural network model for predicting the biomethane yield in an anaerobic digester using biomass composition profiles. Fuel, 344(128053). https://doi.org/https://doi.org/10.1016/j.fuel.2023.128053
  • EBA. (2020). European Biogas Association.
  • Ebner, J. H., Labatut, R. A., Lodge, J. S., Williamson, A. A., & Trabold, T. A. (2016). Anaerobic co-digestion of commercial food waste and dairy manure: Characterizing biochemical parameters and synergistic effects. Waste Management, 52, 286–294. https://doi.org/10.1016/j.wasman.2016.03.046
  • Esposito, G., Frunzo, L., Giordano, A., Liotta, F., Panico, A., & Pirozzi, F. (2012). Anaerobic co-digestion of organic wastes. Reviews in Environmental Science and Biotechnology, 11(4), 325–341. https://doi.org/10.1007/s11157-012-9277-8
  • Flores-Estrella, R. A., Estrada-Baltazar, A., & Femat, R. (2016). A mathematical model and dynamic analysis of anaerobic digestion of soluble organic fraction of municipal solidwaste towards control design. Revista Mexicana de Ingeniera Quimica, 15(1), 243–258.
  • Galí, A., Benabdallah, T., Astals, S., & Mata-Alvarez, J. (2009). Modified version of ADM1 model for agro-waste application. Bioresource Technology, 100(11), 2783–2790. https://doi.org/10.1016/j.biortech.2008.12.052
  • Galván-Arzola, U., Miramontes-Martínez, L. R., Escamilla-Alvarado, C., Botello-Álvarez, J. E., Alcalá-Rodrigez, M. M., Valencia-Vázquez, R., & Rivas-García, P. (2022). Anaerobic digestion of agro-industrial wastes: Anaerobic lagoons in Latin America. Revista Mexicana de Ingeniería Química, Vol 21(No 2). https://doi.org/https://doi.org/10.24275/rmiq/IA2680
  • Hassan, M., Ding, W., Umar, M., & Rasool, G. (2017). Batch and semi-continuous anaerobic co-digestion of goose manure with alkali solubilized wheat straw: A case of carbon to nitrogen ratio and organic loading rate regression optimization. Bioresource Technology, 230, 24–32. https://doi.org/10.1016/j.biortech.2017.01.025
  • Holliger, C., Alves, M., Andrade, D., Angelidaki, I., Astals, S., Baier, U., Bougrier, C., Buffière, P., Carballa, M., De Wilde, V., Ebertseder, F., Fernández, B., Ficara, E., Fotidis, I., Frigon, J. C., De Laclos, H. F., Ghasimi, D. S. M., Hack, G., Hartel, M., … Wierinck, I. (2016). Towards a standardization of biomethane potential tests. Water Science and Technology, 74(11), 2515–2522. https://doi.org/10.2166/wst.2016.336
  • Jacobi, H. F., Moschner, C. R., & Hartung, E. (2011). Use of near infrared spectroscopy in online-monitoring of feeding substrate quality in anaerobic digestion. Bioresource Technology, 102(7), 4688–4696. https://doi.org/10.1016/j.biortech.2011.01.035
  • Justesen, C. G., Astals, S., Mortensen, J. R., Thorsen, R., Koch, K., Weinrich, S., Triolo, J. M., & Hafner, S. D. (2019). Development and validation of a low-cost gas density method for measuring biochemical methane potential (BMP). Water (Switzerland), 11(12), 0–17. https://doi.org/10.3390/W11122431
  • Kabouris, J. C., Tezel, U., Pavlostathis, S. G., Engelmann, M., Todd, A. C., & Gillette, R. A. (2008). The Anaerobic Biodegradability of Municipal Sludge and Fat, Oil, and Grease at Mesophilic Conditions. Water Environment Research, 80(3), 212–221. https://doi.org/10.2175/106143007x220699
  • Leng, L., Yang, P., Singh, S., Zhuang, H., Xu, L., Chen, W. H., Dolfing, J., Li, D., Zhang, Y., Zeng, H., Chu, W., & Lee, P. H. (2018). A review on the bioenergetics of anaerobic microbial metabolism close to the thermodynamic limits and its implications for digestion applications. Bioresource Technology, 247(July 2017), 1095–1106. https://doi.org/10.1016/j.biortech.2017.09.103
  • Long, J. H., Aziz, T. N., Reyes, F. L. D. L., & Ducoste, J. J. (2012). Anaerobic co-digestion of fat, oil, and grease (FOG): A review of gas production and process limitations. Process Safety and Environmental Protection, 90(3), 231–245. https://doi.org/10.1016/j.psep.2011.10.001
  • Maharaj, B. C., Mattei, M. R., Frunzo, L., van Hullebusch, E. D., & Esposito, G. (2018). ADM1 based mathematical model of trace element precipitation/dissolution in anaerobic digestion processes. Bioresource Technology, 267(July), 666–676. https://doi.org/10.1016/j.biortech.2018.06.099
  • Miramontes-Martínez, L. R., Gomez-Gonzalez, R., Botello-Alvarez, J. E., Escamilla-Alvarado, C., Albalate-Ramirez, A., & Rivas-Garcia, P. (2020). Semi-continuous anaerobic co-digestion of contenido vegetable waste and cow manure: A study of process stabilization. Revista Mexicana de Ingeniera Quimica, 19(3), 1117–1134. https://doi.org/10.24275/rmiq/proc920
  • Miramontes-Martínez, Luis Ramiro, Rivas-García, P., Albalate-Ramírez, A., Botello-Álvarez, J. E., Escamilla-Alvarado, C., Gomez-Gonzalez, R., Alcalá-Rodríguez, M. M., Valencia-Vázquez, R., & Santos-López, I. A. (2021). Anaerobic co-digestion of fruit and vegetable waste: synergy and process stability analysis. Journal of the Air & Waste Management Association, 00(00), 1–13. https://doi.org/10.1080/10962247.2021.1873206
  • Mottet, A., Ramirez, I., Carrère, H., Déléris, S., Vedrenne, F., Jimenez, J., & Steyer, J. P. (2013). New fractionation for a better bioaccessibility description of particulate organic matter in a modified ADM1 model. Chemical Engineering Journal, 228, 871–881. https://doi.org/10.1016/j.cej.2013.05.082
  • Njuguna Matheri, A., Mbohwa, C., Ntuli, F., Belaid, M., Seodigeng, T., Catherine Ngila, J., & Kinuthia Njenga, C. (2018). Waste to energy bio-digester selection and design model for the organic fraction of municipal solid waste. Renewable and Sustainable Energy Reviews, 82(June 2016), 1113–1121. https://doi.org/10.1016/j.rser.2017.09.051
  • Palatsi, J., Laureni, M., Andrés, M. V., Flotats, X., Nielsen, H. B., & Angelidaki, I. (2009). Strategies for recovering inhibition caused by long chain fatty acids on anaerobic thermophilic biogas reactors. Bioresource Technology, 100(20), 4588–4596. https://doi.org/10.1016/j.biortech.2009.04.046
  • Reed, J. P., Devlin, D., Esteves, S. R. R., Dinsdale, R., & Guwy, A. J. (2013). Integration of NIRS and PCA techniques for the process monitoring of a sewage sludge anaerobic digester. Bioresource Technology, 133, 398–404. https://doi.org/10.1016/j.biortech.2013.01.083
  • Rivas-Garcia, P., Botello-Alvarez, J. E., Abel Seabra, J. E., Da Silva Walter, A. C., & Estrada-Baltazar, A. (2015). Environmental implications of anaerobic digestion for manure management in dairy farms in Mexico: A life cycle perspective. Environmental Technology (United Kingdom), 36(17), 2198–2209. https://doi.org/10.1080/09593330.2015.1024758
  • Rivas-García, P., Botello-Álvarez, J. E., Miramontes-Martínez, L. R., Cano-Gómez, J. J., & Rico-Martínez, R. (2019). NEW MODEL OF HYDROLYSIS IN THE ANAEROBIC CO-DIGESTION OF BOVINE MANURE WITH VEGETABLE WASTE: MODIFICATION OF ANAEROBIC DIGESTION MODEL No. 1. Revista Mexicana de Ingeniería Química, 19(1), 109–122. https://doi.org/10.24275/rmiq/bio557
  • Rivas-García, P., Botello-Álvarez, J. E., Miramontes-Martínez, L. R., Cano-Gómez, J. J., & Rico-Martínez, R. (2020). New model of hydrolisis in the anaerobic co-digestion of bovine manure with vegetable waste: modification of Anaerobic Digestion Model No. 1. Revista Mexicana de Ingeniería Química, 19(1), 109–122. https://doi.org/10.24275/rmiq/bio557
  • Rivas-García, Pasiano, Botello-Álvarez, J. E., Estrada-Baltazar, A., & Navarrete-Bolaños, J. L. (2013). Numerical study of microbial population dynamics in anaerobic digestion through the Anaerobic Digestion Model No. 1 (ADM1). Chemical Engineering Journal, 228, 87–92. https://doi.org/10.1016/j.cej.2013.05.013
  • Sanchez-Herrera, D., Sanchez, O., Houbron, E., Rustrian, E., Toledano, T., Tapia-Tussell, R., & Alzate-Gaviria, L. (2018). Biomethane potential from sugarcane straw in Veracruz, Mexico: Combined liquid hot water pretreatment and enzymatic or biological hydrolysis. Revista Mexicana de Ingeniera Quimica, 17(3), 1105–1120. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2018v17n3/SanchezH
  • Tufaner, F., & Avşar, Y. (2016). Effects of co-substrate on biogas production from cattle manure: a review. International Journal of Environmental Science and Technology, 13(9), 2303–2312. https://doi.org/10.1007/s13762-016-1069-1
  • Wang, X., Yang, G., Feng, Y., Ren, G., & Han, X. (2012). Bioresource Technology Optimizing feeding composition and carbon – nitrogen ratios for improved methane yield during anaerobic co-digestion of dairy , chicken manure and wheat straw. BIORESOURCE TECHNOLOGY, 120, 78–83. https://doi.org/10.1016/j.biortech.2012.06.058
  • Wu, D., Li, L., Zhao, X., Peng, Y., Yang, P., & Peng, X. (2019). Anaerobic digestion: A review on process monitoring. Renewable and Sustainable Energy Reviews, 103(July 2018), 1–12. https://doi.org/10.1016/j.rser.2018.12.039
  • Xue, S., Wang, Y., Lyu, X., Zhao, N., Song, J., Wang, X., & Yang, G. (2020). Interactive effects of carbohydrate, lipid, protein composition and carbon/nitrogen ratio on biogas production of different food wastes. Bioresource Technology, 312, 123566. https://doi.org/10.1016/j.biortech.2020.123566
  • Zaher, U., Li, R., Jeppsson, U., Steyer, J. P., & Chen, S. (2009). GISCOD: General Integrated Solid Waste Co-Digestion model. Water Research, 43(10), 2717–2727. https://doi.org/10.1016/j.watres.2009.03.018