Revista Mexicana de Ingeniería Química, Vol. 22, No. 2 (2023), Bio3037


Immobilization of a crude extract of laccase from T. hirsute Bm2 on copper alginate for environmental vinasse remediation

C. Hernández-Calderón, R. Tapia-Tussell, G. Lizama-Uc, G. Rivera-Muñoz, D. Magaña-Ortiz, S. Solis-Pereira

https://doi.org/10.24275/rmiq/Bio3037


Abstract

 

Sugarcane vinasses are environmentally aggressive effluents because of their high phenolic content and the presence of other recalcitrant compounds. The aim of this work was to immobilize laccases from Trametes hirsute Bm2 in copper alginate spheres in order to oxidize phenols and remove color from vinasses. Respond Surface Methodology (RSM) was used to evaluate enzyme and CuSO$_4$ concentration during immobilization. Laccase activity retained in spheres was the response variable. Lacasse activity in spheres increased by 30 \% and the best efficiency in immobilization was 95\% with 300 mM of CuSO$_4$ and 150 U/mL of laccase. Vinasse treatment (10\%) with free laccase removed 40\% of phenols, and the addition of natural mediators increased up to 60\%. Immobilized enzymes were able to remove up to 68\% of total phenols. Synthetic and natural mediators were used in the immobilization process to improve the removal of phenols by laccases. However, mediators did not significantly improve the process. The biocatalizer was able to remove phenols during four cycles of treatment and the maximum decoloration was 75\%. These phenomena were attributed to both laccase activity and adsorption to the support. After treatment, a dark precipitate was observed, suggesting polymerizing activity for laccases. These results reveal that laccases immobilized on copper alginate are a feasible alternative for the treatment of sugarcane effluents.

Keywords: phenols, vinasse, laccase, immobilization, cupper alginate.

 

References

  • Ahmed, P.M., De Figueroa, L.I., and Pajot, H.F. (2020). Dual purpose of ligninolytic basidiomycetes: mycoremediation of bioethanol distillation vinasse coupled to sustainable bio-based compounds production.  Fungal Biology Reviews 34, 25-40. https://doi.org/10.1016/j.fbr.2019.12.001
  • Ameri, A., Taghizadeh, T., Talebian-Kiakaleich, F., Darootanfer, H., Mojtabavi, S., Jahandor, H., Tarighi, S. and Alifaramarzi, M. (2021). Bio-removal of phenol by immobilized laccase on the fabricated parent and hierarchical NaY and ZSM-5 zeolites.  Journal of Taiwan Institute of Chemical Engineering 120, 300-312. https://doi.org/10.1016/J.JTICE.2021.03.016

 

  • Ancona-Escalante, W., Tapia-Tussell, R., Pool-Yam, L., Can-Cauich, A., Lizama-Uc, G. and Solis-Pereira, S. (2018). Laccase-mediator system produced by  Trametes hirsuta Bm-2 on lignocellulosic substrate improves dye decolorization.  3 Biotech 8, 298. https://doi.org/10.1007/s13205-018-1323-y
  • Arregui, L., Ayala, M., Gómez-Gil, M., Gutiérrez-Soto, G., Hernández-Luna, C.E., Herrera de los Santos, M., Levin, L., Rojo-Domínguez, A., Romero-Martínez, D., Saparrat, M.C.N., Trujillo-Roldán, M.A. and Valdez-Cruz, N.A. (2019). Laccases: structure, function, and potential application in water bioremediation.  Microbial Cell Factories 18, 200. https://doi.org/10.1186/s12934-019-1248-0

 

  • Bakkiyaraj, S., Aravindan, R., Arrivukkarasan, S. and Viruthagiri, T. (2013). Enhanced laccase production by  Trametes hirsuta using wheat bran under submerged fermentation.  International Journal of Chemical and Technology Research 5, 1224 -1238.
  • Berrio, J., Plou, G., Francisco, J., Ballesteros O.A., Martínez, A. and Martínez M.J. (2007). Immobilization of  Pycnopourus coccineus laccase on Eurergit C: stabilization and treatment of olive oil mill wastewater.  Biocatalysis and Biotransformation 25, 130-134. https://doi.org/10.1080/10242420701379122

 

  • Collins, P.J., Kotterman, M.J.J., Field, J.A., and Dobson, A.D.W. (1996). Oxidation of anthracene and bezo [a pyrene by laccases from  Trametes versicolor. Applied Environmental Microbiology 62, 4563-4567. https://doi.org/10.1128/aem.62.12.4563-4567.1996
  • Couto, R.S. and Toca, J.L. (2006). Inhibitors of laccases: A review.  Current Enzyme Inhibition 2, 343-352. https://dx.doi.org/10.2174/157340806778699262

 

  • Chris Felshia, S., Aswin Karthick, N., Thilagam, R., Chandralekha, A., Raghavarao, K. and Gnanamani, A. (2017). Efficacy of free and encapsulated  Bacillus lichenformis strain SL10 on degradation of phenol: A comparative study of degradation kinetics.  Journal of Environmental Management 197, 373-383. https://doi.org/10.1016/j.jenvman.2017.04.005
  • Dajun, R., Wandg, Z., Jiang, S., Yu, H., Zhang, S. and Zhang, X. (2020). Recent environmental applications of a development prospect for immobilized laccase: a review.  Biotechnology and Genetic Engineering Reviews 36, 81-131. doi: 10.1080/02648725.2020.1864187

 

  • España-Gamboa, E., Chablé-Villacis, R., Alzate-Gaviria, L., Dominguez-Maldonado, J., Leal-Baustista, R.M., Soberanis-Monforte, G. and Tapia-Tussell, R. (2018). Native fungal strains from Yucatan, an option for treatment of biomethanated vinasse.  Revista Mexicana de Ingeniería Química 20, 607-620. https:// doi.org/10.24275/rmiq/IA2063
  • Farias-Silva C.E. and de Souza-Abud A.K. (2016). Anaerobic biodigestion or sugarcane vinasse under mesophilic conditions using manure as inoculm.  Ambiente \& Agua -An interdisciplinary Journal of Applied Science 11. https://doi.org/10.4136/ambi-agua.1897

 

  • García-Reyes M., Beltrán-Hernández R.I., Vázquez-Rodríguez G.A., Coronel-Olivares C., Medina-Moreno S.A., Juárez-Santillán L.F. and Lucho-Constantino C.A. (2017). Formation, morphology and biotechnological applications of filamentous pellets: A review.  Revista Mexicana de Ingeniería Química 16, 703-720
  • Gonzalez-Coronel, L.A., Cobas, M., Rostro-Alanis, M.J., Parra-Saldívar, R., Hernandez-Luna, C., Pazos, M., and Sanromán, M. Á. (2017). Immobilization of laccase of  Pycnoporus sanguineus CS43.  New Biotechnology 39 (Pt A), 141-149. https://doi.org/10.1016/j.nbt.2016.12.003

 

  • Junior, J.A., Vieira, Y.A., Cruz, I.A., da Silva V.D., Aguiar, M.M. and Torres, N.H., Bharagava, R.N., Lima, A.S., de Souza, R.L. and Romanholo Ferreira, L.F. (2019). Sequential degradation of raw vinasse by a laccase enzyme-producing fungus  Pleurotus sajor-caju and its ATPS purification.  Biotechnology Reports (Amsterdam, Netherlands)  25, e00411. https://doi.org/10.1016/j.btre.2019.e00411
  • Krastanov, A. (2000). Removal of phenols from mixtures by co-immobilized laccase/tirosinase and polycar adsorption.  Journal of Industrial Microbiology and Biotechnology 24, 383-388. https://doi.org/10.1038/sj.jim.7000009

 

  • Lassouane, F., Aït-Amar, H., and Rodriguez-Couto, S. (2022). High BPA removal by immobilized crude laccase in a batch fluidized bed bioreactor.  Biochemical Engineering Journal 184, 108489. http://doi.org/10.1016/j.bej.2022.108489
  • Liu, J., Shen, X., Zheng, Z., Li, M., Zhu, X., Cao, H. and Cui, C. (2020). Immobilization of laccase by 3D bioprinting and its application in the biodegradation of phenolic compounds.  International Journal of Biological Macromolecules 164, 518-525. https://doi.org/10.1016/j.ijbiomac.2020.07.144

 

  • Mani, P., Kumar, V.T.F., Keshavarz, T., Sainathan Chandra, T. and Kyazze, G. (2018). The role of natural laccase redox mediators in simultaneous dye decolorization and power production in microbial fuel cells.  Energies 11, 3455. https://doi.org/10.3390/en11123455
  • Mathew, A.K., Abraham, A., Mallapureddy, K.K. and Sukumaran, R.K. (2018). Lignocellulosic biorefinery wastes, or resources?  Waste Biorefinery Potential Perspectives, 267-297. http://doi.org./10.1016/B978-0-444-63992-9.00009-4

 

  • Mohana, S., Acharya, B. K. and Madamwar, D. (2009). Distillery spent wash: treatment technologies and potential applications.  Journal of Hazardous Materials 163, 12-25. https://doi.org/10.1016/j.jhazmat.2008.06.079
  • Montiel-Rosales, A., Montalvo-Romero N., García-Santamaría L.E., Sandoval-Herazo, L.C., Bautista-Santos, H. and Fernández-Lambert, G. (2022). Post industrial use of sugarcane ethanol vinasse: a systematic review.  Sustainability 14, 11635. https://doi.org/10.3390/su141811635

 

  • Niku-Paavola, M.L., Raaska, L., and Itävaara, M. (1990). Detection of white-rot fungi by a non-toxic stain.  Mycological Research 94. https://doi.org/10.1016/S0953-7562(09)81260-4
  • Noa-Bolaño, A., Pérez-Ones, O., Zumalacárreguide-Cardenas, L. and Pérez de los Rios, J.L. (2020). Simulation of concentration and incineration as an alternative for vinasse treatment.  Revista Mexicana de Ingeniería Química 19, 1265-1275. https://doi.org/10.24275/rmiq/Sim883

 

  • Olajuyigbe, F.M., Adetuyi, O.Y. and Fatokun, C.O. (2019). Characterization of free and immobilized laccase from Cyberlindnera fabianii and application in degradation of bisphenol A.  International Journal Biological Macromolecules 125, 856-864. https://doi.org/10.1016/j.ijbiomac.2018.12.106
  • Peart, P.C., Chen, A.R., Reynolds, W.F., and Reese, P.B. (2012). Entrapment of mycelial fragments in calcium alginate: a general technique for the use of immobilized filamentous fungi in biocatalysis.  Steroids 77, 85-90. https://doi.org/10.1016/j.steroids.2011.10.008

 

  • Pérez-Fernández, A. and Venegas-Venegas, J.A. (2017). Producción de bioetanol en México: Implicaciones socio-económicas.  Revista Internacional Administración y Finanzas 10, 13-24. https://ssrn.com/abstract=2916912.
  • Pérez-Salazar, Y., Peña-Montes, C., del Moral, S., and Aguilar-Uscanga, M. (2022). Cellulases production from Aspergillus niger-ITV-02 using corn lignocellulosic residues.  Revista Mexicana de Ingeniería Química 21, Alim2772. https://doi.org/10.24275/rmiq/Alim2772

 

  • Phetson, J., Khammurangs, S., Suwannawong, P. and Sarnthima, R. (2009). Copper alginate encapsulation of crude laccase from  Lentinus polycrous Lev. and their effectiveness in synthetic dyes decolorization.  Journal of Biological Sciences 9, 573-583.                              https:// doi.org/10.3923/jbs.2009.573.583
  • Rasheed, T., Bilal, M., Nabeel, F., Adeel, M. and Iqbal, H. (2019). Environmentally-related contaminants of high concern: Potential sources and analytical modalities for detection, quantification, and treatment.  Environment International 122, 52-66. https://doi.org/10.1016/j.envint.2018.11.038

 

  • Reis, C.E.R., Bento, H.B.S., Alves, T.M., Carvalho, A.K.F., and De Castro, H.F. (2019). Vinasse treatment within the sugarcane-ethanol industry using ozone combined with anaerobic and aerobic microbial processes.  Environments 6. http://dx.doi.org/10.3390/environments6010005
  • Singleton, V., Orthofer, R., Lamuela-Raventós, R.M. (1999). [14 Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent.  Methods in Enzymology 299. https://doi.org/10.1016/S0076-6879(99)99017-1

 

  • Sondhi, S., Kaur, R., Kaur, S. and Kaur, P.S. (2018). Immobilization of laccase-ABTS system for the development of a continuous flow packed bed bioreactor for decolorization of textile effluent.  International Journal of Biological Macromolecules 117, 1093-1100. https://doi.org/10.1016/j.ijbiomac.2018.06.007
  • Sukan, A., and Sargin S. (2013). Enzymatic removal of phenol from wastewaters.  Journal of Biomoaterials and Nanobiotechnolohy 4, 300-307. https://doi.org/104236/jbnb.43038

 

  • Sharafi-Badr, P., Ehsandoost, E., Ghasemiyan, N., Mohammadi, M., Safari, R., and Habibi, M. (2023). Effect of sodium alginate-calcium chloride coating and glycerol and sorbitol concentration on oxidative stability and fungal growth of Persian walnut ( Juglans regia L.).  Revista Mexicana de Ingeniería Química 22, Alim2928. https://doi.org/10.24275/rmiq/Alim2928
  • Tapia-Tussell, R., Pérez-Brito, D., Rojas-Herrera, R., Cortes-Velázquez, A., Rivera-Muñoz, G., and Solis-Pereira, S. (2011). New laccase-producing fungi isolates with biotechnological potential in dye decolorization.  African Journal of Biotechnology 10, 10134-10142. https://doi.org/10.5897/AJB11.331

 

  • Tapia-Tussell, R., Pérez-Brito, D., Torres-Calzada, C., Cortés-Velázquez, A., Alzate-Gaviria, L., Chablé-Villacís, R., and Solís-Pereira, S. (2015). Laccase gene expression and vinasse biodegradation by  Trametes hirsuta strain Bm-2.  Molecules (Basel, Switzerland) 20, 15147-15157. https://doi.org/10.3390/molecules200815147
  • Teerapatsakul, C., Bucke, C., Parra, R., Keshavarz, T. and Chitradon, L. (2008). Dye decolorisation by laccase entrapped in copper alginate.  World Journal of Microbiology and Biotechnology 24, 1367-1374. https://doi.org/10.1007/s11274-007-9617-y

 

  • Ting-Ting, X., Mei, F., Chun-Lei, L., Chun-Zhao, L. and Chen G. (2021). Efficient phenol degradation by laccase immobilized on functional magnetic nanoparticles in fixed bed reactor under high-gradient magnetic field.  Engineering in Life Sciences 21, 374-384. https://doi.org/10.1002/elsc.202100009
  • Toomsan, W., Mungkarndee, P., Boonlue, S., Giao, N.T. and Siripattanakul-Ratpukdi, S. (2020). Potential degradation and kinetics of melanoidin by using laccase from white rot fungus.  Applied Environmental Research 42, 1-10. https://doi.org/10.35762/AER.2020.42.3.1

 

  • Vera, M., Nyanhongo G.S., Guebitz, G.M. and Rivas, B.L. (2019). Polymeric microspheres as support to co-immobilized  Agaricus bisporus and  Trametes versicolor laccases and their application in diazinon degradation.  Arabian Journal of Chemistry 13, 4218-4227. https://doi.org/1016/j.arabjc.2019.07.003
  • Waterhouse, A. (2003). Determination of total phenolics.  Current Protocols in Food Analytical Chemistry. https://doi.org/10.1002/0471142913.fai0101s06

 

  • Xiao, Y.Z., Chen, Q., Hang, T.J. and Shi, Y. (2004). Selective Induction, Purification and characterization of a laccase isozyme from the basidiomycete  Trametes sp. AH28-2.  Mycologia 96, 26-35. https://doi.org/10.2307/3761984
  • Yang, J., Li, W., Ng, T.B., Deng, X., Lin, J., and Ye, X. (2017). Laccases: production, expression regulation, and applications in pharmaceutical biodegradation.  Frontiers in Microbiology 8. 10.3389/fmicb.2017.00832.

 

  • Zapata-Castillo, P., Villalonga-Santana, L., Islas-Flores, I., Rivera-Muñoz, G., Ancona- Escalante, W. and Solis-Pereira, S. (2015). Synergistic action of laccases from  Trametes hirsuta Bm2 improves decolourization of indigo carmine.  Letters in Applied Microbiology 61, 252-258. https://doi.org/10.1111/lam.12451
  • Zhang, J., Sun, L., Zhang, H., Wang, S., Zhang, X. and Geng, A. (2018). A novel homodimer laccase from  Cerrena unicolor BBP6: purification, characterization, and potential in dye decolorization and denim bleaching.  PLoS ONE 13, e0202440. https://doi.org/10.1371/journal.pone.0202440