Revista Mexicana de Ingeniería Química, Vol. 22, No. 2 (2023), Ener2320


Bioelectrochemical behavior of Ordered Mesoporous Carbon + B. subtilis as bioanode for the production of bioenergy in a Microbial Fuel Cell (MFC)

S. García-Mayagotia, F.J. Rodríguez-Varela, F. Fernández-Luqueño, C.R. Sarabia-Castillo, J.C. Carrillo-Rodríguez, I.L. Alonso-Lemus, P.C. Meléndez-González, B. Escobar-Morales

https://doi.org/10.24275/rmiq/Ener2320


Abstract

 

The bioelectrochemical behavior of non-functionalized Ordered Mesoporous Carbon (OMC) and functionalized with methanol at different concentrations (0.15, 0.5 and 1 M, labeled as OMC015, OMC05, and OMC1, respectively), forming bioanodes with Bacillus subtilis (B. subtilis) as the electrochemically active microorganism (EAM), was evaluated in a dual-chamber Microbial Fuel Cell (MFC). OMC015 showed the highest surface area (550.0 m2 g-1) with a total pore volume of 0.270 cm3 g-1 (those of OMC were 410.6 m2 g-1 and 0.191 cm3 g-1, respectively). Cyclic voltammograms (CVs) in pharmaceutical wastewater (PWW, pH= 7.1) showed an enhanced bioelectrochemical behavior of the OMC + B. subtilis and OMC015 + B. subtilis bioanodes compared to OMC05 + B. subtilis and OMC1 + B. subtilis. Therefore, the two former bioanodes were evaluated in the MFC containing PWW as substrate in the anode chamber. The results showed differences in the behavior of the bioanodes in long-term tests (7 days) in the MFC. OMC + B. subtilis showed a decrease in Open Circuit Voltage (OCV) and current density (j) values from Day 0 to Day 3, followed by a slight increase in j and a higher OCV at Day 7 (compared to Day 3). Meanwhile, OMC015 + B. subtilis showed a more stable bioelectrochemical behavior, with slight variations in OCV and j at Days 0, 3 and 7. The maximum power density (Pcell) of the MFC was 12.3 mW m-2 with OMC015 + B. subtilis at Day 3 of operation. The results showed the biocompatibility between the OMC015 catalysts and B. subtilis as EAM, and their catalytic activity to oxidize organic matter contained in PWW, generating bioenergy from the MFC.  

Keywords: Ordered Mesoporous Carbon, B. subtilis, pharmaceutical wastewater, Microbial Fuel Cells, bioelectrochemical energy.

 

References

  • Al-Ansari, M., Benabdelkamel, H., & Al-Humaid, L. (2021). Degradation of sulfadiazine and electricity generation from wastewater using Bacillus subtilis EL06 integrated with an open circuit system. Chemosphere 276, 130145. doi:10.1016/j.chemosphere.2021.130145
  • Al-Gheethi, A., Noman, E., Mohamed, R., Ismail, N., Abdullah, A., & Kassim, A. (2019). Optimizing of pharmaceutical active compounds biodegradability in secondary effluents by β-lactamase from Bacillus subtilis using central composite design. Journal of Hazardous Materials 365, 883-894. doi:10.1016/j.jhazmat.2018.11.068
  • Alonso-Lemus, I., Cobos-Reyes, C., Figueroa-Torres, M., Escobar-Morales, B., Aruna, K., Akash, P., & Rodríguez-Varela, F.J. (2022). Green Power Generation by Microbial Fuel Cells Using Pharmaceutical Wastewater as Substrate and Electroactive Biofilms (Bacteria/Biocarbon). Journal of Chemistry 2022, 1963973. doi:10.1155/2022/1963973
  • Bharti, A., & Cheruvally, G. (2017). Influence of various carbon nano-forms as supports for Pt catalyst on proton exchange membrane fuel cell performance. Journal of Power Sources 360, 196-205. doi:10.1016/j.jpowsour.2017.05.117.
  • Carrillo-Rodríguez, J., Garay-Tapia, A., Escobar-Morales, B., Escorcia-García, J., Ochoa-Lara, M., Rodríguez-Varela, F.J., & Alonso-Lemus, I. (2021). Insight into the performance and stability of N-doped Ordered Mesoporous Carbon Hollow Spheres for the ORR: Influence of the nitrogen species on their catalytic activity after ADT. International Journal of Hydrogen Energy, 46, 26087-26100. doi:10.1016/j.ijhydene.2021.01.047
  • Conzuelo, F., Ruff, A., & Schuhmann, W. (2018). Self-powered bioelectrochemical devices. Current Opinion in Electrochemistry 12, 156-163. doi:10.1016/j.coelec.2018.05.010
  • Cui, D., Wang, Y., Xing, L., & Li, W. (2014). Which determines power generation of microbial fuel cell based on carbon anode, surface morphology or oxygen containing group? International Journal of Hydrogen Energy 39, 15081-15087. doi:dx.doi.org/10.1016/j.ijhydene.2014.07.095
  • Duarte-Urbina, O., Rodríguez-Varela, F.J., Fernández-Luqueño, F., Vargas-Gutiérrez, G., Sánchez-Castro, M., Escobar-Morales, B., & Alonso-Lemus, I. (2021). Bioanodes containing catalysts from onion waste and Bacillus subtilis for energy generation from pharmaceutical wastewater in a microbial fuel cell. New Journal of Chemistry 45, 12634-12646. doi:10.1039/d1nj01726h
  • Gang, Y., Li, B., Fang, S., Pellessier, J., Fang, L., Pan, F., Du, Z., Hu, Y.H., Li, T., Wang, G., & Li, Y. (2023). Efficient electrochemical CO2 reduction to CO by metal and nitrogen co-doped carbon catalysts derived from pharmaceutical wastes adsorbed on commercial carbon nanotubes. Chemical Engineering Journal 453,139712. doi:10.1016/j.cej.2022.139712
  • García-Mayagoitia, S., Fernández-Luqueño, F., Morales-Acosta, D., Carrillo-Rodríguez, J., García-Lobato, M., De la Torre-Saenz, L., Alonso-Lemus, I.L., & Rodríguez-Varela, F.J. (2019). Energy Generation from Pharmaceutical Residual Water in Microbial Fuel Cells Using Ordered Mesoporous Carbon and Bacillus Subtilis as Bioanode. ACS Sustainable Chemistry and Engineering, 7, 12179-12187. doi: 10.1021/acssuschemeng.9b01281
  • He, Z., & Mansfeld, F. (2009). Exploring the use of electrochemical impedance spectroscopy (EIS) in microbial fuel cell studies. Energy & Environmental Science 2, 215-219. doi:10.1039/b814914c
  • International Energy Agency. (2023). World Energy Balances. Retrieved May 29th, 2023, from https://www.iea.org/reports/world-energy-balances-overview
  • Islam, A., Teo, S., Ng, C., Taufiq-Yap, Y., Choong, S., & Awal, M. (2023). Progress in recent sustainable materials for greenhouse gas (NOx and SOx) emission mitigation. Progress in Materials Science 132, (101033). doi:10.1016/j.pmatsci.2022.101033
  • Kan, X., Song, F., Zhang, G., Zheng, G., Zhu, Q., Liu, F., & Jiang, L. (2023). Sustainable design of co-doped ordered mesoporous carbons as efficient and long-lived catalysts for H2S reutilization. Chemical Engineering Science 269,(118483). doi:10.1016/j.ces.2023.118483
  • Kipf, E., Koch, J., Geiger, B., Erben, J., Richter, K., Gescher, J., Zengerle, R., & Kerzenmacher, S. (2013). Systematic screening of carbon-based anode materials for microbial fuel cells with Shewanella oneidensis MR1. Bioresource Technology 146, 386-392. doi:10.1016/j.biortech.2013.07.076
  • Lan, L., Li, J., Feng, Q., Zhang, L., Fu, Q., Zhu, X., & Liao, Q. (2020). Enhanced current production of the anode modified by microalgae derived nitrogen-rich biocarbon for microbial fuel cells. International Journal of Hydrogen Energy 45, 3833-3839. doi:10.1016/j.ijhydene.2019.06.199.
  • Lian, Q., Konggidinata, M., Ahmad, Z., Gang, D., Yao, L., Subramaniam, R., Revellame., Holmes, W.B. & Zappi, M. (2019). Combined effects of textural and surface properties of modified ordered mesoporous carbon (OMC) on BTEX adsorption. Journal of. Hazardous Materials 377, 381-390. doi: https://doi.org/10.1016/j.jhazmat.2019.05.079
  • Lilloja, J., Mooste, M., Kibena-Põldsepp, E., Sarapuu, A., Kikas, A., Kisand, V., Käärik, M., Kozlova, J., Treshchalov, A., Paiste, P., Aruväli, J., Leis, J., Tamm., Holdcroft, S., & Tammeveski, K. (2023). Cobalt-, iron- and nitrogen-containing ordered mesoporous carbon-based catalysts for anion-exchange membrane fuel cell cathode. Electrochimica Acta 439,(141676). doi:10.1016/j.electacta.2022.141676
  • Liu, T., Yu, Y., Chen, T., & Chen, W. (2017). A Synthetic Microbial Consortium of Shewanella and Bacillus for Enhanced Generation of Bioelectricity. Biotechnology and Bioengineering 114, 526-532. doi:10.1002/bit.26094
  • Ma, X., Yuan, H., & Hu, M. (2019). A simple method for synthesis of ordered mesoporous carbon. Diamond and Related Materials 98,(107480). doi: 10.1016/j.diamond.2019.107480
  • Manohar, A., Bretschger, O., Nealson, K., & Mansfeld, F. (2008). The use of electrochemical impedance spectroscopy (EIS) in the evaluation of the electrochemical properties of a microbial fuel cell. Bioelectrochemistry 72, 149-154. doi:10.1016/j.bioelechem.2008.01.004
  • Masoodi, K., Lone, S., & Rasool, R. (2021). Growth of bacterial cultures and preparation of growth curve. In K. Masoodi, S. Lone, & R. Rasool, Advanced Methods in Molecular Biology and Biotechnology (pp. 163-166). Academic Press. doi:10.1016/B978-0-12-824449-4.00030-X
  • Maziarka, P., Wurzer, C., Arauzo, P., Dieguez-Alonso, A., Masek, O., & Ronsse, F. (2021). Do you BET on routine? The reliability of N2 physisorption for the quantitative assessment of biochar’s surface area. Chemical Engineering Journal 418,(129234). doi:10.1016/j.cej.2021.129234
  • Menéndez, J., Arenillas, A., Fidalgo, B., Fernández , Y., Zubizarreta, L., Calvo, E., & Bermúdez, J. (2010). Microwave heating processes involving carbon materials. Fuel Processing Technology 91, 1-8. doi:10.1016/j.fuproc.2009.08.021
  • Modestra, J., & Mohan, S. (2014). Bio-electrocatalyzed electron efflux in Gram positive and Gram negative bacteria: an insight into disparity in electron transfer kinetics. RSC Advances 4, 34045-34055. doi:10.1039/c4ra03489a
  • Morales-Acosta, D., Rodríguez-Varela, F.J., & Benavides, R. (2016). Template-free synthesis of OMC: Application as a support of highly active Pt nanoparticles for the oxidation of organic fuels. International Journal of Hydrogen Energy 41, 3387-3398. doi: 10.1016/j.ijhydene.2015.10.114
  • Obata, O., Greenman, J., Kurt, H., Chandran, K., & Ieropoulos, I. (2020). Resilience and limitations of MFC anodic community when exposed to antibacterial agents. Bioelectrochemistry 134,(107500). doi:doi.org/10.1016/j.bioelechem.2020.107500
  • Pant, D., & Patil, S. (2022). Microbially catalyzed bioelectrochemical power devices come of age. Joule 6, 1399-1401. doi:10.1016/j.joule.2022.06.033
  • Patel , N., Rai, D., Chauhan, D., Mishra, U., & Bhunia, B. (2019). Carbon Nanotube Based Anodes and Cathodes for Microbial Fuel Cells. In: Microbial Fuel Cells: Materials and Applications, (Inamuddin, M. Faraz-Ahmer, A. Asiri, eds.), pp. 125-150. Materials Research Forum LLC. doi:10.21741/9781644900116-6
  • Pérez-Rodríguez, S., Sebastián, D., & Lázaro, M. (2019). Electrochemical oxidation of ordered mesoporous carbons and the influence of graphitization. Electrochim Acta 303, 167-175. doi:10.1016/j.electacta.2019.02.065
  • Pinto, D., Coradin, T., & Laberty-Robert, C. (2018). Effect of anode polarization on biofilm formation and electron transfer in Shewanella oneidensis/graphite fuel microbial fuel cells. Bioelectrochemistry 120, 1-9. doi:10.1016/j.bioelechem.2017.10.008
  • Plekhanova, Y., Rai, M., & Reshetilov, A. (2022). Nanomaterials in bioelectrochemical devices: on applications enhancing their positive effect. 3 Biotech 12,231. doi:10.1007/s13205-022-03260-w
  • Ramasamy, R., Ren, Z., Mench, M., & Regan, J. (2008). Impact of initial biofilm growth on the anode impedance of microbial fuel cells. Biotechnology and Bioengineering 101, 101-108. doi:10.1002/bit.21878
  • Rashid, T., Sher, F., Hazafa, A., Hashmi, R., Zafar, A., Rasheed, T., & Hussain, S. (2021). Design and feasibility study of novel paraboloid graphite based microbial fuel cell for bioelectrogenesis and pharmaceutical wastewater treatment. Journal of Environmental Chemical Engineering 9,104502. doi:10.1016/j.jece.2020.104502
  • Ren, Z., Ramasamy, R., Cloud-Owen, S., Yan, H., Mench, M., & Regan, J. (2011). Time-course correlation of biofilm properties and electrochemical performance in single-chamber microbial fuel cells. Bioresource Technology 102, 416-421. doi:10.1016/j.biortech.2010.06.003
  • Rodríguez-Varela, F.J., & Savadogo, O. (2009). Ethanol-tolerant Pt-alloy cathodes for direct ethanol fuel cell (DEFC) applications. Asia-Pacific Journal of Chemical Engeneering 4, 17-24. doi: 10.1002/apj.193
  • Ryu, J., Landers, M., & Choi, S. (2022). A sweat-activated, wearable microbial fuel cell for long-term, on-demand power generation. Biosensors and Bioelectronics 205,114128. doi:10.1016/j.bios.2022.114128
  • Serra, P., Espíritu-Santo, A., & Magrinho, M. (2020). A steady-state elecrical model of a microbial fuel cell through multiple-cycle polarization curves. Renewable and Sustainable Energy Reviews 117,109439. doi:10.1016/j.rser.2019.109439
  • Szopińska, M., Ryl, J., & Pierpaoli, M. (2023). Closing the loop: Upcycling secondary waste materials into nanoarchitectured carbon composites for the electrochemical degradation of pharmaceuticals. Chemosphere 313,137631. doi:10.1016/j.chemosphere.2022.137631
  • Thommes, M., Kaneko, K., Neimark, A., Olivier, J., Rodríguez-Reinoso, F., Rouquerol, J., & Sing, K. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry 87, 1051-1069. doi:10.1515/pac-2014-1117
  • Vidal, J., Huilinir, C., Santander, R., Silva-Agredo, J., Torres-Palma, R., & Salazar, R. (2019). Degradation of ampicilin antibiotic by electrochemical processes: Evaluation of antimicrobial activity of treated water. Environmental Science and Pollution Research 26, 4404-4414. doi: 10.1007/s11356-018-2234-5
  • Wan, X., Li, Y., Xiao, H., Pan, Y., & Liu, J. (2020). Hydrothermal synthesis of nitrogen-doped oredered mesorporous carbon via lysine-assisted self-assembly for efficient CO2 capture. RSC Advances 10, 2932-2941. doi:10.1039/c9ra09983b
  • Wang, X., Lin, Q., Pan, H., Jia, S., Wu, H., Shi, Y., & Wang, Z. (2020). Oxidation modification of chitosan-based mesoporous carbon by soft template method and the adsorption and release properties of hydroxycamptoecin. Scientific Reports 10,15772. doi:10.1038/s41598-020-72933-4
  • Weidenthaler, C., Lu, A., Schmidt, W., & Schüth, F. (2006). X-ray photoelectron spectroscopic studies of PAN-based ordered mesoporous carbons (OMC). Microporous Mesoporous Materials 88, 238-243. doi:10.1016/j.micromeso.2005.09.015
  • Xiao, N., Wu, R., Huang, J., & Selvaganapathy, P. (2020). Anode surface modifications regulates biofilm community population and the performance of micro-MFC based biochemical oxygen demand sensor. Chemical Engineering Science 221, 11569. doi: 10.1016/j.ces.2020.115691
  • Zhang, J., Zhou, Y., Yao, B., Yang, J., & Zhi, D. (2021). Current progress in electrochemical anodic-oxidation of pharmaceuticals: Mechanisms, influencing factors, and new technique. Journal of Hazardous Materials 418, 126313. doi:10.1016/j.jhazmat.2021.126313
  • Zhao, P., Zhang, H., Sun, X., Hao, S., & Dong, S. (2022). A hybrid bioelectrochemical device based on glucose/O2 enzymatic biofuel cell for energy conversion and storage. Electrochimica Acta 420, 140440. doi:10.1016/j.electacta.2022.140440
  • Zhou, M., Yang, J., Wang, H., Jin, T., Hassett, D., & Gu, T. (2014). Bioelectrochemistry of Mirobial Fuel Cell and their Potential Applications in Bioenergy. In Bioenergy Reearch: Advances and Applications, (V.K. Gupta, M.G. Tuohy, C.P. Kubicek, J. Saddler, F. Xu, eds.), pp. 132-147. Elsevier, New York. doi:10.1016/B978-0-444-59561-4.00009-7