Revista Mexicana de Ingeniería Química, Vol. 22, No. 2 (2023), IA2313


Electrocoagulation as a possible treatment for wastewater polluted with industrial lubricant oils

A. Soto-Vázquez, P. Sánchez-Galindo, J. A. Barraza-Madrigal, J. I. Guzmán-Castañeda

https://doi.org/10.24275/rmiq/IA2313


Abstract

 

Electrocoagulation has demonstrated significant removal effectiveness of grease, oils, biodiesel and microplastics in wastewater. The optimum operation parameters for industrial lubricant oils removal in wastewater were defined in this investigation by using a parallel array of two pair of aluminum 6061 electrodes. The experiment was performed using a rectangular batch reactor made up of glass where an analogous water polluted with 1 ml of industrial lubricant oil waste was treated applying a current density of 40 A/m2 in a range of 10 to 50 minutes and varying the addition of 100 ml of a 2 g/L NaCl solution. The optimum operating conditions within the range analyzed achieved 91% of removed lubricant after 30 minutes of treatment and using the electrolyte additive. Furthermore, the analogous treated water contained 1.6 mg/L of Total Suspended Solids (TSS), 8.44 pH units, 0.97 Nephelometric Units of Turbidity (NUT) and 14.33 color units in the platinum/cobalt scale. These results make the treated water a possible candidate as service or irrigation water.

Keywords: Acorn extract, Natural antioxidant, Oxidation, Meat burger.

 

References

  • An, C., Huang, G., Yao, Y. & Zhao, S. (2017). Emerging usage of electrocoagulation technology for oil removal from watewater: A review. Science of the Total Environment, nº 579, pp. 537-556.
  • Andrade, C. (2015). Propuesta de un plan de manejo sustentable de los aceites usados provenientes de los talleres automotrices y lubricadoras del Cantón Cañar. Available: https://dspace.ups.edu.ec/bitstream/123456789/7683/1/UPS-CT004544.pdf .
  • Changmai, M., Pasawan, M. & Purkait, M. (2019).Treatment of oily wastewater from drilling site using electrocoagulation followed by microfiltration. Separation and Purification Technoligy, vol. 210, pp. 463-472.
  • Fong, W., Quiñonez, E. and Tejada, C. (2017). Physical-chemical characterization of spent engine oils for its recycling. Prospectiva 15(2), 135-144. http://dx.doi.org/10.15665/rp.v15i2.782 .
  • Gobb, L., Nascimento, I., Muniz, E., Rocha, S. & Porto, P. (2018). Electrocoagulation with polarity switch for fast oil removal from oil in water emulsions. Journal of Environmental Management, vol. 213, p. 119-125.
  • IKA. (2021). Guidelines for Cleaning Electrodes. Available at: https://www.ika.com/ika/pdf/flyer-catalog/202103_Electrasyn%202.0_cleaning%20electrodes_EN.pdf.
  • Jurado, A. (2017). Contaminación y manejo de aceites lubricantes usados. Revista Valores. Universidad La Salle Available at: https://hoy.lasalle.mx/contaminacion-y-manejo-de-aceites-lubricantes-usados/#:~:text=aceite%20lubricante%20usado.-,Los%20aceites%20lubricantes%20usados%20(ALU)%20son%20considerados%20como%20residuos%20peligrosos,integral%20de%20Residuos%20(LGPGIR). Accessed: September 29, 2022.
  • Morales, P. (2015). Tratamiento de agua Residual de Biodiésel por electrocoagulación. Tesis de Licenciatura en Ingeniería Química Industrial, Instituto Politécnico Nacional, México.
  • Morales, S. (2018). Remoción de aceites y grasas de un efluente industrial del sector lácteo por electrocoagulación con electrodos de aluminio. Available: http://cybertesis.uni.edu.pe/bitstream/uni/16416/1/morales_qs.pdf.
  • Moussa, D., El-Naas, M., Nasser, M. and Al-Marri, M. A comprehensive review of electrocoagulation for water treatment: Potentials and challenges. Journal of Environmental Management 30(186), 1-18. https://doi.org/10.1016/j.jenvman.2016.10.032
  • Perozo, J. & y Abreu, R. (2017). Evaluación de la electrocoagulación en el tratamiento de agua potable. Available: https://www.redalyc.org/pdf/863/86351157005.pdf.
  • Perren, W., Wojtasik, A. and Cai, Q. (2018). Removal of Microbeads form Wastewater Using Electrocoagulation. ACS Omega 3, 3357-3364. https://doi.org/10.1021/acsomega.7b02037
  • Canul, M., et al. (2023). Biodegradation of crude oil present un wastewaters: evaluation of biosurfactant production and catechol 2,3 dioxygenase activity. Revista Mexicana de Ingeniería Química Vol. 22, No. 1 (2023) Bio2932. Available: https://doi.org/10.24275/rmiq/Bio2932
  • Portal Automotriz. (2015). Lubricantes: el motor que impulsa a las industrias mexicanas. Available: https://www.portalautomotriz.com/noticias/proveedores/lubricantes-el-motor-que-impulsa-a-las-industrias-mexicanas.
  • Quesada, E. (2021). Evaluación de la gestión de los residuos generados en los centros de servicio automotriz que realizan cambio de aceite en la provincia de Heredia, Costa Rica. Available: https://hdl.handle.net/2238/13301.
  • Rodrigues, J., Merçon, F., Firmino, L., Andrade, A., Braz, P. and da Costa, M. (2015). Evaluation of electrocoagulation as pre-treatment of oil emulsions, followed by reverse osmosis. Journal of Water Process Engineering 8, 126-135. https://doi.org/10.1016/j.jwpe.2015.09.009
  • Sanz, A. (no date). Lubricantes. Available: https://www.eii.uva.es/organica/qoi/tema-13.php.
  • Tahreen, A., Jami, M., and Ali, F. (2020). Role of electrocoagulation in wastewater treatment: A developmental review. Journal of Water Process Engineering 37, 1-11. https://doi.org/10.1016/j.jwpe.2020.101440
  • Medrano, Z., et al. (2022). Domestic wastewater treatment by electrocoagulation system using photovoltaic solar energy. Revista Mexicana de Ingeniería Química Vol. 21, No. 2 (2022) IA2809. Available: https://doi.org/10.24275/rmiq/IA2809